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OPTIMAL FEATURE SELECTION FROM HIGH-DIMENSIONAL FUSION OF BLOOD
SMEAR IMAGES FOR LEUKEMIA DIAGNOSIS

G. CHINNA PULLAIAH∗AND P.M. ASHOK KUMAR†

Abstract. The goal of this study is to improve blood smear image-based blood cancer prediction through medical diagnostic
advancements. Blood cancers, particularly leukemia, are challenging to diagnose because of the complexity of biological data and
the dimensionality of medical images. There are interpretability and computational problems with each currently in use. We
suggest the Random Forest-Recurrent Feature Elimination (RF-RFE) model to increase the precision and dependability of blood
cancer diagnosis. This model integrates machine learning and image processing, optimizes feature selection and refinement from
high-dimensional data, and applies the XGBoost algorithm to guarantee diagnosis accuracy. Recent model analysis reveals that
RF-RFE performs better than them on a wide range of metrics. The RF-RFE offered a sensible, well-rounded strategy. More
research on medical diagnostics is made possible by its adaptability in multi-class classification and effectiveness in handling high-
dimensional feature values. The optimized feature set and computational efficiency of the model, which may enhance leukemia
detection and diagnostics, are highlighted in this study.
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1. Introduction. Computational methods improve medical image analysis, including blood disease di-
agnosis. Example: blood smear image analysis shows blood cell morphology and number. Before, experts
manually examined these images, which was tedious, time-consuming, biased, and error-prone [1]. Image pro-
cessing, machine learning, and digital morphology automate, speed up, and accurately analyze blood smears
[2]. Automated analysis can detect subtle blood cell variations that manual methods miss and produce more
consistent results [3]. XGBoost and other machine learning methods enable fast, accurate, and automatic blood
smear image analysis. XGBoost, scalable and reliable, excels at survival analysis [4] and image classification
[5]. It handles large, complex datasets. Using XGBoost to analyze blood smear images requires extracting and
selecting blood cell features. Keypoints, color, shape, and texture measures are features. Combining features
can increase dimensionality, redundancy, and noise, hurting predictive models. Blood smear image analysis is
essential for diagnosing fatal diseases like acute lymphoblastic leukemia (ALL). To simplify and improve feature
space, XGBoost-based blood smear image analysis needs efficient feature selection.

This research seeks to create an ALL-diagnostic tool by painstakingly extracting and selecting the most
important features from blood smear images. The goals are to analyze blood smear images’ many features,
create an ideal feature selection procedure to reduce noise and redundant information, and create a diagnostic
model using XGBoost’s strength with the refined feature set.

Feature selection prepares high-dimensional datasets for accurate predictions. A good choice can reduce
computational requirements, improve model precision, and explain data dynamics. ALL diagnoses require top
accuracy. Simplified features reduce overfitting by generalizing models.

Advanced feature optimization is possible with RF and RFE. RF’s ensemble nature aggregates feature
importance while RFE iteratively culls features. XGBoost’s gradient boosting framework and unmatched
predictive power complete this hybrid approach and handle ALL predictions’ complexity.

Blood smear image features are extracted and selected for ALL diagnostics in this research. Although other
conditions or domains may benefit from the principles and techniques discussed, ALL prognosis is the main
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focus. Evaluation of all features will show morphological and spatial details’ importance. Although predictive
modeling is essential to this study, it is mostly used to evaluate the chosen features’ reliability and efficiency.

A comprehensive medical image analysis literature review, including XGBoost diagnostics, follows. The
paper will then discuss RF-RFE feature selection and XGBoost predictive modeling. Results and discussions
will compare findings to prior research, discuss implications, and suggest improvements or more research. The
conclusions will summarize key findings and suggest future research

2. Related Research. The diagnosis and early detection of blood cancer using computational techniques
remains a critical research avenue, as evidenced by the array of pioneering work in the domain. The following
section delves into the recent advancements in this field, encapsulating studies that employ various methods,
from matrix-based feature extraction to intricate deep learning frameworks.

Arif Muntasa et al., [6] has presented a method to classify Acute Lymphoblastic Leukemia (ALL) using
the Gray Level Co-occurrence Matrix (GLCM) and sixteen distance models, resulting in 192 features for each
object. This method achieved an impressive accuracy rate of 96.97% with minimal false positives and negatives,
outperforming other existing approaches. Aldinata Rizky Revanda et al. [7] introduced an efficient approach
for classifying ALL on white blood cell microscopy images. They propose using Mask R-CNN for instance
segmentation and contrast enhancement to improve classification accuracy, achieving an accuracy of 83.72%,
precision of 85.17%, and sensitivity of 81.61%.

Zeinab Moshavash et al.’s study [8] focused on accurately diagnosing acute leukemia using blood microscopic
images. They introduce a reliable and automatic leukocyte segmentation and feature extraction technique that
sets a new benchmark for ALL recognition with 98.10% cell and 89.81% image accuracy.

In order to maximize ALL detection, Nada M. Sallam et al. [9] employed Grey Wolf Optimization (GWO)
for feature selection. They increase the efficiency and accuracy of ALL diagnosis to 99.69%, 99.5% sensitivity,
and 99% specificity.

Ghada Emam Atteia et al. [10] addressed early ALL prognosis with a hybrid deep learning system. By
merging autoencoder networks and pretrained convolutional neural networks, this system achieves feature
extraction and ALL diagnosis accuracy better than state-of-the-art techniques.

Using Multiple Instance Learning for Leukocyte Identification (MILLIE), Petru Manescu et al. [11] auto-
mate the analysis of blood films and bone marrow aspirates for the diagnosis of acute promyelocytic leukemia
through the use of deep learning. MILLIE’s high accuracy in identifying APL in bone marrow aspirates and
blood films made clinical evaluations easier in environments with limited resources.

Segu Praveena et al. [12] introduced the segmentation and classification of acute lymphoblastic leukemia
(ALL) using Deep CNN, Grey Wolf-based Jaya Optimization Algorithm (GreyJOA), and Sparse Fzzy C-Means
(Sparse FCM). With its promising sensitivity, specificity, and accuracy, this ALL diagnosis method has the
potential to lower patient mortality.

A social spider optimization-based computer-aided diagnosis system for acute lymphoblastic leukemia was
proposed by Ahmed T. Sahlol et al. [13]. This innovative model surpasses previous approaches and may
help with early ALL diagnosis thanks to its unique integration of multiple features and 95.67% classification
accuracy.

Bayesian-optimized CNNs were applied to microscopic blood smear images by Ghada Atteia et al. [14] in
order to diagnose ALL. Their model outperformed other cutting-edge techniques with a 96.81% accuracy rate
on the test set, demonstrating its enormous potential for ALL detection.

A computer system based on image analysis was created by Ahmed M. Abdeldaim et al. [15] to diagnose
ALL. With the K-NN classifier in particular, the system segments and classifies cells as normal or affected with
good accuracy. Although statistical results are not provided in the article, the suggested system might aid in
the diagnosis of ALL.

The inefficiencies of manually identifying acute lymphoblastic leukemia (ALL) were investigated by Adel
Sulaiman et al. [16]. ResRandSVM increases the accuracy of automated diagnosis by utilizing Random Forest
for feature selection, ResNet50 for feature extraction, and Support Vector Machine for classifier. Three methods
are used to refine the deep features that multiple models extract. The improved features for blood smear
leukemia detection are tested by four classifiers. ResRandSVM performs well when using InceptionV3 for
feature extraction, Random Forest for feature refinement, and SVM for classification. ResRandSVM performs
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better in experiments than in other comparisons, indicating that it has the potential to expedite ALL diagnosis.
The recent advancements in Leukemia diagnosis present a range of methodologies, each contributing valu-

able insights to the domain. Arif Muntasa et al.’s work [6] utilizes the Gray Level Co-occurrence Matrix
(GLCM) for feature extraction, whereas other studies, like that of Ghada Emam Atteia et al. [10], delve into
deep learning frameworks.

One notable trend from the related research is the focus on robust feature extraction and optimization. Arif
Muntasa et al.’s approach [6], while achieving high accuracy rates, extracts 192 features for each object. Such a
comprehensive feature space, while detailed, might introduce redundancy, potentially leading to computational
inefficiencies and overfitting. This is where our RF-RFE model’s strength becomes evident. By streamlining
feature sets and removing non-essential attributes, RF-RFE offers an optimized and relevant feature set for
diagnosis.

Deep learning models, such as Ghada Atteia et al.’s Bayesian-based CNNs [14] and Petru Manescu et al.’s
MILLIE [11], are powerful but often demand significant computational resources. Moreover, their complexity
can sometimes challenge interpretability, which is essential in medical applications.

Optimization techniques also find representation in this array of research. Nada M. Sallam et al.’s work
[9] introduces the Grey Wolf Optimization algorithm for feature selection. Their method, with its impressive
accuracy metrics, illustrates the potential of nature-inspired algorithms. In contrast, our RF-RFE, rooted in
Random Forests, offers a method that seeks to understand the inherent structure of the data.

Furthermore, Adel Sulaiman et al.’s ResRandSVM [16] shares similarities with our approach by integrating
feature extraction, refinement, and classification. However, our RF-RFE stands apart in its explicit focus on
addressing redundancy in high-dimensional data, ensuring the most optimal feature set powers the subsequent
XGBoost mechanism.

Considering the diverse methodologies in blood cancer diagnosis, our RF-RFE model emerges as a balanced
approach that emphasizes precision, computational efficiency, and clarity, marking its significance in the field.

3. Methods and Materials. The sequential phase architecture of the RF-RFE framework is depicted
in Figure 3.1. Microscopic blood smear features are used by the novel machine learning-based blood cancer
prediction model RF-RFE. Preprocessing techniques are prominently featured in this first stage to enhance
image clarity and quality. Next, combine the texture, color, and morphology to create a comprehensive feature
vector. RF-RFE, designed for high-dimensional data, controls refinement. Through a series of iterations,
this process carefully eliminates less significant attributes to produce an ideal feature set for analysis. The
gradient-boosting algorithm XGBoost performs well with complex biological data. XGBoost [17] starts off with
this precisely calibrated feature set. This machine learning model trains, adapts, and improves its predictive
capabilities using gradient-boosted tree algorithms [16]. Throughout the modeling process, performance is
monitored to guarantee the best possible outcomes. This system detects leukemia-variant blood cancers early
by using machine learning and image analysis.

3.1. Preprocessing.
Image Resizing. Image resizing standardizes the dimensions of all images to a consistent size. This ensures

that features extracted from each image are comparable and consistent. Images acquired from different sources
or devices can have varying dimensions. Resizing them to a consistent dimension helps in managing the
computational cost and ensuring uniformity in feature extraction.
Let I be the input image with dimensions (h,w). Resizing it to dimensions (h′, w′) is achieved by a spatial
transformation function T , such that I ′ = T (I) where I ′ is the resized image.

Noise Reduction. Noise reduction involves filtering the image to remove unwanted artifacts and noise,
which could distort the image’s actual content. Medical images might contain noise due to various reasons
like electronic interference, transmission errors, or imperfect sensors. Removing this noise is essential for clear
visualization and accurate feature extraction. A common method is Gaussian blurring, represented as: I ′ = G∗I
where I ′ is the denoised image, ∗ denotes convolution, and G is a Gaussian kernel.

Contrast Enhancement. Contrast enhancement amplifies the differences between pixel values in an image,
making features more distinguishable. Some medical images might have low contrast due to the nature of the
tissue or the acquisition process. Enhancing contrast aids in better visualization and differentiation of regions
of interest.



Optimal Feature Selection from High-dimensional Fusion of Blood Smear Images for Leukemia Diagnosis 1983

Fig. 3.1: Architecture of RF-RFE

Histogram equalization is one technique:

pr(k) = nk/MN (3.1)

where pγ is the normalized histogram, γk are pixel intensities, nk is the number of pixels with intensity γk, and
M ×N is the image size.

Image Segmentation. Image segmentation partitions an image into multiple segments or regions, often
separating objects of interest from the background. In medical imaging, segmenting out regions of interest, like
tumors or specific organs, allows for targeted analysis and reduces computational costs.

One method is the Otsu’s thresholding:

σ2
ω(t) = ω0(t)ω1(t)[µ0(t)− µ1(t)]

2 (3.2)

3.2. Feature Engineering. Feature engineering is a cornerstone in machine learning applications for
predicting ALL from blood smear images. Fusion of diverse features – including keypoints and key descriptors,
morphological attributes, color distributions, texture patterns, spatial relationships, boundary contours, and the
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Nucleus to Cytoplasm Ratio – provides a comprehensive representation of the intricate details present in blood
smear images. Each of these feature types captures a unique aspect of cellular structures and their potential
abnormalities, ensuring the model receives a holistic understanding of the image content. The significance of
this fusion lies in its ability to enhance the model’s robustness and predictive capability; while some features,
like color, might capture staining intensity variations indicative of ALL, others, such as morphological features,
can hint at cell structure anomalies. By integrating these diverse features, we harness the collective strength
of each feature type, thereby justifying their fusion for an optimal and accurate ALL prediction model.

3.2.1. The Features. Keypoints and Descriptors: These features highlight the salient features of key-
points found in images. Scale [18], orientation [19], location [20], contrast [21], edge response, Harris response,
main orientation, descriptor vector [22], Laplacian sign [23], and magnitude [24] are some of them. For lo-
cating specific areas of interest in images and understanding their characteristics, these features are essential.
While the descriptor vector encodes local appearance, scale, orientation, and location are particularly crucial
for spatial information.

Physical characteristics [25]. Morphological features identify characteristics of the object’s size and shape.
Area, perimeter, compactness, major and minor axis lengths, eccentricity, convexity, area, solidity, extent,
orientation, and equivalent diameter are important characteristics. The morphology and structure of objects,
such as cells in medical images, can be described using these features. Fundamental size and shape descriptors
include area and perimeter, while eccentricity and convexity shed light on any irregularities in an object’s shape.

Features of color. Color features concentrate on the color data present in objects. For the red, green, and
blue channels, they include mean intensities and standard deviations as well as chroma, hue, value (brightness),
color variance, and color entropy. For distinguishing objects based on their color attributes, these features are
crucial. The distribution and variation of color can be better understood using mean intensities and standard
deviations.

Details of the texture. The spatial arrangement of pixel intensities within objects is described by texture
features. They consist of Haralick textures [26], Gabor filters [27], energy (uniformity), entropy [28], homogene-
ity, correlation, dissimilarity, second moment, and fractal dimension [29]. Understanding the minute details
and patterns within objects requires these features, which are essential. For instance, contrast and entropy
quantify the complexity and randomness of a texture.

Features of spatial relationships. The arrangement and relationships between the objects in an image are
described by spatial relationship features. They include the following metrics: the nearest neighbor distance,
pairwise distance statistics (mean and standard deviation), the clustering coefficient, the convex hull area ratio,
the object separation index, the object density, the object orientation, the object eccentricity, the object area
ratio, and the object perimeter ratio. Analysis of object spatial distributions and clustering patterns benefits
greatly from these features.

Features of the boundary and contour. The shape and boundary characteristics of objects are the focus of
boundary and contour features. They consist of the following: perimeter, compactness, aspect ratio, circularity,
solidity, convexity, bending energy, curvature, and skeletonization. Insights into the object’s general shape,
roundness, and curvature are provided by these features, which are crucial for identifying object classes.

Ratio of Cytoplasm to Nucleus. The interaction between the nucleus and cytoplasm in cells is quantified
by these features. They include the nucleus to cytoplasm area ratio, the nucleus to cytoplasm perimeter, the
nucleus to cytoplasm roundness ratio, the nucleus to cytoplasm eccentricity ratio, the nucleus to cytoplasm
eccentricity ratio, the nucleus to cytoplasm eccentricity ratio, and the nucleus to cytoplasm eccentricity. The
balance between the properties of the nucleus and the cytoplasm, which is a feature of these features, can be a
sign of the health of a cell in the context of medical image analysis.

3.2.2. Feature Extraction. Feature extraction from blood smear images is a process tailored to capture
intricate cellular details pivotal for diagnostics. It begins with key-points and key-descriptors, identifying
unique patterns within the cells that are invariant to image transformations. Morphological features elucidate
the shape and structure of cells, highlighting any irregularities. While texture features depict subtle patterns
and variations within the cell structures, the color spectrum captures the variation in staining intensities,
which can be indicative of pathological changes. Context is provided by spatial relationship features, which
show how cells are positioned and distributed in relation to one another. The Nucleus to Cytoplasm Ratio
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provides information about cellular composition, which is frequently disturbed in conditions like ALL, while
boundary and contour features highlight the edges and outline of cells. With their combined ability to provide
a multidimensional view of blood cells, these features are crucial for sophisticated diagnostic machine learning
models.

Key Ideas and Key Descriptives A well-known method for extracting key details and their descriptors
from images that guarantees invariance to scale, rotation, and lighting changes is called SIFT (Scale-Invariant
Feature Transform) [30]. These key points can indicate particular unique patterns or anomalies in cells in the
context of blood smear images. SIFT is a viable option for thorough blood cell analysis because of its capacity
to recognize and describe these unique features, despite possible variations in image capture conditions.

Scale-space Extrema Detection. The first step in SIFT is generating a scale space. This is achieved by
convolving the original image I(x, y) with Gaussian functions G(x, y, σ) over a range of scales. This can be
represented as: L(x, y, σ) = G(x, y, σ) ∗ I(x, y). Here, ‘*‘ denotes the convolution operation.

Key point Localization. After creating the scale space, we search for potential keypoints. These are iden-
tified at the maxima and minima of the difference-of-Gaussians (DoG) [31] function. The DoG is formed as:
D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y). Here ‘k‘ is a multiplicative constant.

Orientation Assignment. For rotation invariance, each key point is given an orientation based on the local
gradient directions of the image. The gradient magnitude m(x, y) and direction θ(x, y) at each pixel are given
by:

m(x, y) =
√
((L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2) (3.3)

Θ(x, y) = arctan((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)))) (3.4)

Keypoint Descriptor. Finally, a descriptor for each keypoint is formed by accumulating gradient magnitudes
and orientations in a localized region around the keypoint. This step ensures the descriptor’s robustness to
changes in appearance, such as lighting or affine transformations.

Morphological Features [32]. Morphological features are crucial in differentiating various cell structures
within blood smear images. The method of Watershed segmentation, aided by gradient information, is
paramount in delineating these attributes. It effectively discriminates between cells that are adjacent or slightly
overlapping, making it apt for precisely defining boundaries. Given the essential nature of cell morphology in
diagnostics, this technique’s accuracy and versatility make it indispensable.

Gradient Computation. Given an image I(x, y), the gradient magnitude is:

G(x, y) = ((Ix(x, y))
2 + (Iy(x, y))

2) (3.5)

Distance Transform. For a binary image B(x, y), the distance D(x, y) to the nearest zero pixels is:

D(x, y) = min(i,j)((x− i)2 + (y − j)2) (3.6)

Watershed Segmentation. UsingG(x, y), basins are formed meeting at watershed lines, indicating cell bound-
aries.

Color Features. Color histograms and moments are foundational for extracting color features from blood
smear images, capturing variations in staining intensities. These intensities can hint at abnormalities, making
the method invaluable for diagnostics. The approach is justified as it’s computationally efficient and offers a
broad representation of cellular color distribution. Histogram Computation: Given image I, histogram H for
a color channel c is:

Hc(k) = |(x, y)|Ic(x, y) = k| (3.7)

Moments. The nth moment of a histogram Hc is:

Mn = 255
(k=0)k

nHc(k) (3.8)



1986 G. Chinna Pullaiah, P.M. Ashok Kumar

Texture Features. Gray Level Co-occurrence Matrix (GLCM) [33] stands out for texture feature extraction.
By analyzing pixel pair frequencies at specific positions, GLCM encapsulates patterns and textures in cells,
pivotal for discerning abnormalities. Its efficacy in capturing local variations makes it a justified choice.

GLCM Computation. For an offset (∆x,∆y), GLCMP (i, j) is the frequency of pixel pairs with intensities
i and j.

Spatial Relationship Features. To understand the spatial positioning and orientation of cells, Delaunay
triangulation is optimal. This method creates triangles connecting nearby cells, offering insights into cell
distribution and proximity. Given the importance of cell relationships in diagnostic contexts, this approach is
vital.

Delaunay Triangulation. Given a set of points P , a triangle (p, q, r) belongs to the Delaunay triangulation
if no other point in P lies within the circumcircle of the triangle.

Circumcircle condition. For each triangle ∆ABC in T , let O be the center of the circumcircle passing
through A, B, and C. The triangulation T is Delaunay if and only if no point P from the set lies inside the
circle with O as the center.

Empty Circle Property. For every triangle∆ABC in the Delaunay Triangulation, the circumcircle of∆ABC
does not contain any other point of P in its interior.

Boundary and Contour Features. Active Contour Model or Snakes is a potent method for boundary and
contour feature extraction. By iteratively evolving curves based on internal and external forces, it clings to
cell boundaries, ensuring precise contour delineation. This method’s adaptability to subtle boundary nuances
justifies its adoption. Snake Evolution: The snake υ(s) = [x(s), y(s)] evolves according to:

Ftotal() =
1
0Fint() + Fimage() + Fcon()ds (3.9)

Spatial Relationship Features. To understand the spatial positioning and orientation of cells, Delaunay
triangulation is optimal. This method creates triangles connecting nearby cells, offering insights into cell
distribution and proximity. Given the importance of cell relationships in diagnostic contexts, this approach is
vital.

Boundary and Contour Features. Active Contour Model or Snakes is a potent method for boundary and
contour feature extraction. By iteratively evolving curves based on internal and external forces, it clings to
cell boundaries, ensuring precise contour delineation. This method’s adaptability to subtle boundary nuances
justifies its adoption.

Nucleus to Cytoplasm Ratio [34]. Thresholding and region-based segmentation are crucial for delineating
the nucleus and cytoplasm in cells. By computing their areas separately and determining their ratio, insights
into cellular health are gleaned. This feature is critical given its prominence in many pathological conditions,
including ALL.

Thresholding: For image I, binary image B(x, y) is:

(1ifI(x, y) > T ; 0otherwise) (3.10)

Ratio Computation: For segmented nucleus area AN and cytoplasm area AC :

Ratio = AN/AC (3.11)

3.3. Optimal Feature Selection. Modern medical image analysis relies heavily on extracting compre-
hensive features from images to improve the accuracy of disease predictions. When dealing with blood smear
images, especially in the context of ALL prediction, a fusion of various features — including keypoints and
key descriptors, morphological features, color features, texture features, spatial relationship features, boundary
and contour features, and the Nucleus to Cytoplasm Ratio — provides a rich representation of data. Yet, such
fusion can also introduce redundancy and noise. Therefore, there’s a pressing need for an optimal selection
process to retain only the most significant features, ensuring efficient and accurate diagnosis models.

The combination of Random Forest (RF) [35] with Recursive Feature Elimination (RFE) [36] offers a
systematic approach to tackle this challenge. RF inherently ranks features based on their importance, providing
an aggregated measure of their significance in the classification task. This prioritization becomes critical when
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handling a diverse set of features, ensuring the model focuses on the most relevant attributes. RFE, on the
other hand, is a recursive method that eliminates less important features step by step, thereby refining the
feature set.

1. Holistic Data Representation [37]. Given the fusion of diverse features, there’s a mix of linear and
non-linear data patterns. RF’s nature to cater to both ensures that no crucial data pattern is overlooked.

2.Redundancy Reduction [38]. The fusion of multiple feature sets often leads to overlapping information.
RF’s intrinsic feature ranking, combined with the iterative removal process of RFE, ensures that redundant
features are systematically eliminated.

3. Interpretability. Medical diagnostics requires not just accuracy but also the ability to understand the
decision-making process. RF offers insight into feature importance, aiding researchers and medical practitioners
in discerning the key features driving predictions.

4. Optimal Performance. RF’s ensemble nature, utilizing multiple decision trees, ensures a balance between
bias and variance, leading to robust and stable predictions. When combined with the refined feature set from
RFE, it results in enhanced model performance.

5. Efficiency in Training. By focusing only on the most significant features, the computational burden
during model training is reduced, leading to faster and more efficient model training without compromising
accuracy.

Optimal feature selection using RF-RFE involves a synergistic approach to refine a fusion of diverse features
- keypoints and key descriptors, morphological features, color characteristics, texture patterns, spatial relation-
ship attributes, boundary and contour details, and the Nucleus to Cytoplasm Ratio. This amalgamation offers
a comprehensive representation of data, capturing both global and local nuances. RF-RFE stands out in this
context due to its inherent ability to rank features based on their ensemble importance. By systematically and
recursively eliminating less impactful features, RF-RFE ensures the retention of only the most significant ones,
enhancing model performance. This methodology leverages the strengths of Random Forest, such as handling
non-linear patterns and feature interactions, to provide a robust and justified selection of optimal features from
the intricate fusion.

Filter techniques prioritize features using individual statistical metrics, often overlooking their interactions
or their relevance to the target variable. They might consider measures like variance or outcome correlation.
While efficient, they can miss intricate relationships in a diverse feature set. RF-RFE, leveraging Random
Forest, excels in recognizing inter-feature relationships, giving a richer assessment. With each tree evaluating
features across different scenarios, RF-RFE adeptly navigates complex and non-linear relationships, proving
more suitable for critical ALL prediction features.

Wrapper techniques, encompassing methods like backward elimination, depend on specific classifiers to
assess feature subsets. They take into account feature interplays and can produce classifier-specific feature
sets. However, they’re resource-heavy, especially for vast feature sets derived from image fusion. RF-RFE
smartly amalgamates wrapper and embedded strengths. Random Forest’s ranking captures intricate patterns,
and RFE’s recursive procedure facilitates streamlined, efficient feature pruning. This blend enhances scalability
and adaptability, especially beneficial for the nuanced feature set in ALL prediction.

Techniques like LASSO merge feature selection with model training. While efficient and often clear-cut,
they may not always grasp complex relationships, especially with a broad fusion of features from blood smear
images. RF-RFE, utilizing Random Forest’s ensemble strength, delivers a robust feature significance assessment.
Paired with RFE’s methodical approach, it ensures a thorough yet focused feature exploration, making RF-RFE
particularly suitable for the multifaceted feature landscape of ALL prediction.

Theoretical foundation. Random Forest-Recursive Feature Elimination (RF-RFE) combines the robust clas-
sification capabilities of Random Forest (RF) [39] with the systematic feature pruning of Recursive Feature
Elimination (RFE) [40]. RF builds multiple decision trees on varied data subsets and averages their predic-
tions, offering reduced overfitting and high interpretability. Each tree’s construction uses a random subset of
features, emphasizing different attributes across trees. RFE, on the other hand, iteratively trains the model,
ranks features by their importance, and removes the least significant ones. When fused, RF-RFE leverages
RF’s feature importance metrics to efficiently and recursively prune irrelevant features, optimizing the model
for both performance and interpretability, especially vital in intricate tasks like medical diagnostics.



1988 G. Chinna Pullaiah, P.M. Ashok Kumar

Random Forest (RF). The strength of RF comes from aggregating (or ”bagging”) the results of numerous
decision trees, each trained on a subset of the data. The variability among trees decreases the model’s variance,
reducing the likelihood of overfitting.

Let’s denotes:
D: The original dataset.
Di: A bootstrap ample of D
F : The bull set of features.
Fj : A random subset of features at node split j.

Lemma 1. Every tree in the forest is built on a bootstrap sample (a random sample with replacement)
from the original data. This bootstrap sampling introduces variability among the trees:

Di = (x∗
1, y

∗
1), (x

∗
2y

∗
2), ..., (x

∗
ny

∗
n) (3.12)

where each (x∗
ky

∗
k) is a random sample with replacement from D.

Lemma 2. At each node split, only a random subset of features is considered, further introducing variability
among the trees. This randomness ensures that the trees are uncorrelated, making the averaging process more
effective at reducing variance. For each node split j: Fj ⊂ F where Fj is a randomly selected subset of features
from F at that node.

The forest’s final prediction, YRF for regression can be an average of the individual trees’ predictions, and
for classification, it can be a majority vote. If T represents the total number of trees:

YRF =
1

T

T∑
i=1

Ytreei

where Ytreei is the prediction of the ith tree.
Recursive Feature Elimination (RFE). RFE is a wrapper-based feature selection algorithm that fits the

model multiple times, each time eliminating the least important features.
Let’s denote:

Φ: A function which ranks features based on importance after training the model.
Fk: Set of features retained in the kth iteration.

Lemma 3:. At each iteration, after the model (in this case, RF) is trained, features are ranked based on
their importance. The least important features are more likely to add noise than provide value. After training
on Fk features:

(Fk) = 1, 2, ..., k (3.13)

where1 is the most important and k is the least important.
Lemma 4. By recursively training the model and eliminating the least important features at each step, the

model becomes more focused on the most significant features. This stepwise refinement ensures that the final
feature subset is optimal or near-optimal for model performance.

Given a step size after each iteration:

F(k+1) = Fk − k, (k−1), ..., (k−+1) (3.14)

That is, the least important δ features from Fk are removed to form Fk+1. This recursive process continues
until a desired number of features is retained, or until model performance meets a specified criterion.

3.4. RF-RFE Algorithm.

Initialization: Start with the full dataset D and the complete feature set F .
Set T as the number of trees for the RF model.
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Set δ as the number of features to remove in each iteration of RFE.
Set Fcurrent = F .

Random Forest Training: For i = 1 to T
(a) Bootstrap Sampling:
Di = {(x∗

1, y
∗
1), (x

∗
2, y

∗
2), ..., (x

∗
n, y

∗
n)}

Where each (x∗
k, y

∗
k) is a random sample with replacement from D.

(b) Construct Tree: For each node split j:
Select a random subset of features:
Fj ⊂ Fcurrent
Split the node using the best feature in Fj based on an impurity criterion (e.g., Gini impurity or entropy).

Feature Importance Evaluation: After training the RF model on Fcurrent:
Φ(Fcurrent) = {ϕ1, ϕ2, ..., ϕm}
where ϕ1 is the most important feature, and ϕm is the least important, and m is the size of Fcurrent.

Feature Elimination: Remove the least important δ features:
Fnext = Fcurrent − {ϕm, ϕm−1, ..., ϕm−δ+1}
Set Fcurrent = Fnext

Recursive Iteration: Repeat the above 4 steps from initialization to feature elimination until the desired
number of features is retained, or another stopping criterion such as model performance on a validation set
reaches a threshold is met.

Final Model Training: Train the RF model on the dataset D using the final selected feature subset from
Fcurrent.
Model Evaluation and Prediction: Evaluate the model’s performance using out-of-bag samples. Out-of-
bag (OOB) [41] error estimation is a unique property of the bootstrap aggregating (bagging) procedure, which
is central to the Random Forest algorithm. When a specific data instance is not used for building a particular
tree during bootstrap sampling, it becomes an OOB sample for that tree. Given the nature of bootstrapping,
roughly one-third of the data are left out of the bootstrap sample and not used in the construction of the
kthtree.

• Let D be the dataset of size N .
• Let T be the number of trees in the random forest.
• For each instance xi in D, let Trees(xi) be the set of trees for which xi is an OOB sample.
• Let Predtreej (xi) be the prediction of the jth tree for the instance xi:

OOB Prediction for a Data Instance: For each instance xi, the OOB prediction, PredOOB(xi), is given by
the majority vote (classification) or average (regression) of the predictions of the trees for which xi is an OOB
sample. PredOOB(xi) = MajorityVote({Predtreej (xi)|treej ∈ Trees(xi)}) (For classification)
PredOOB(xi) =

1
|Trees(xi)|

∑
treej∈Trees(xi)

Predtreej (xi) (For regression)

OOB Error: The OOB error is the proportion of instances that are misclassified (for classification) or the
mean squared error (for regression) based on the OOB predictions:

ErrOOB = 1/NN
(i=1)I[PredOOB(xi)yi] (3.15)

(For classification, where is the indicator function, which is 1 if the condition is true and 0 otherwise) ErrOOB =
1/NN

(i=1)(PredOOB(xi)− yi)
2 (For regression)

The ErrOOB provides an unbiased estimate of the rest error without the need for cross-validation or a
separate rest set, making it highly efficient for model evaluation in bagging-based methods like random forest.
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3.5. Model Building with XGBoost. Utilizing XGBoost with features selected by RF-RFE addresses
the complexity and high dimensionality inherent in biological data, such as blood smear images for ALL
prediction. By combining Random Forest’s capacity to discern feature importance with XGBoost’s gradient-
boosting mechanism, this approach offers an enhanced predictive accuracy and efficiency. The synergy between
the ensemble techniques of RF-RFE and XGBoost together ensures robust feature selection, reduced overfitting,
and a model fine-tuned for performance, making it particularly vital for the precise and critical domain of
medical diagnoses like ALL.

Let D be the dataset of blood smear images.
Let F be the fusion of features extracted from D, where:
F = {keypoints and key descriptors,
morphological features, color characteristics,
texture patterns,
spatial relationship attributes,
boundary and contour details,
Nucleus to Cytoplasm Ratio}
Step 1: Feature Extraction and Fusion

• For each image i in D:
• Extract each feature set f in F
• Create a combined feature vector vi for image i

Step 2: RF-RFE for Optimal Feature Selection
• Train a Random Forest classifier on D with all features in F .
• Use the feature importance scores provided by the RF classifier to rank the features.
• Initialize a subset S with all features from F .
• While S has more than one feature:
• Remove the least important feature (based on RF’s ranking) from S.
• Retrain the RF classifier with the reduced feature set S.
• Update the feature ranking based on the retrained RF classifier.
• The final feature subset S∗ is the one that achieves the highest classification performance on a validation
set.

Step 3: Model Building with XGBoost
• Let L(y, ŷ) be the logistic loss function where y is the true label and ŷ is the predicted probability.
• Initialize model with: ŷ(0)i = 1

2 ln
(∑

yi=1 ωi∑
yi=0 ωi

)
where ωi is the instance weight.

For each boosting round t = 1 to T :
Compute the gradient and hessian for each instance i:
gi =

∂L(yi,ŷ
(t−1)
i )

∂ŷ
(t−1)
i

hi =
∂2L(yi,ŷ

(t−1)
i )

∂(ŷ
(t−1)
i )2

• Build a regression tree to predict the gradients using feature from S∗

• For each leaf j of the tree, compute: ωj = −
∑

i∈leaf j gi∑
i∈leaf j(hi+λ) where λ is a regularization parameter.

• Update the predictions for each instance i: ŷ(t)i = ŷ
(t−1)
i +ηωj where η is the learning rate and i belongs

to leaf j.

3.6. Model Tuning and Re-evaluation. Stagnation isn’t acceptable. The model, post its initial train-
ing, enters a phase of continuous evaluation. Through regular hyper-parameter tuning and occasional feature
re-selection, it ensures its predictions remain sharp and relevant.

Let Dtrain be the training dataset of blood smear images, and Dal be the validation dataset.
Let Prepresent hyperparameters for XGBoost, including:
• Learning rate
• Maximum tree depthD
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Fig. 3.2: Flow Diagram of the RF-RFE

• Minimum child weightmin

• Subsample ratio
• Column (feature) sample rate
• Regularization term

Initial Training and Evaluation. Train the XGBoost model on Dtrain using features selected by RF-RFE
and initial hyperparameters P0. Evaluate the model on Dal to obtain performance metric M0.

Hyper-parameter Tuning. For each hyperparameter pinP :
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Table 4.1: List of Assumptions related to 10 fold cross validation perform

Assumption Description
Data Source and Quali-
ty (C_NMC_2019
dataset)

The C_NMC_2019 dataset [43] is assumed to be a reliable and representative source of
blood smear images for Acute Lymphoblastic Leukemia (ALL) diagnosis. It is assumed that
the dataset has been carefully curated and contains images indicative of various disease
stages.

10-Fold Cross-
Validation Methodo-
logy

The experimental study assumes the use of a 10-fold cross-validation methodology, which
involves dividing the dataset into 10 subsets (folds) for training and testing. This method-
ology ensures robust model evaluation by exposing it to different training-test splits.

Model Comparison
(RF-RFE, GWO,
RESRANDSVM)

The study assumes the comparison of the RF-RFE model’s performance with that of two
contemporary models, GWO [9] and RESRANDSVM [16]. It is assumed that these models
are suitable benchmarks for evaluating the effectiveness of RF-RFE in leukemia detection.

Performance Metrics Multiple performance metrics, including precision, recall, specificity, accuracy, f-measure,
and ROC (Receiver Operating Characteristic), are assumed to be used for model evaluation.
These metrics provide a comprehensive understanding of the models’ capabilities.

Goal of Comprehen-
sive Evaluation

The ultimate goal of the experimental study is to assess the true predictive power of the
models and their ability to balance false positives and false negatives. This assessment aims
to determine the potential real-world applicability of the models in leukemia detection.

1. Adjust p within a predefined range or set.
2. Retrain XGBoost on Dtrain using the updated hyperparameters.
3. Evaluate the model on Dalto Obtain performance matricMp .
4. If Mpis better (e.g. higher accuracy or AUC, lower loss) than the best metric so far, update Pbest with

the current set of hyperparameters.

Model Re-evaluation with Updated Hyper-parameters. Train the XGBoost model on Dtrainusing features
selected by RF-RFE and Pbest.

Evaluate the model on Dalto confirm performance improvement.

The flow diagram shown in figure 3.2 illustrates the process of Random Forest - Recursive Feature Elim-
ination (RF-RFE), a feature selection technique used in machine learning. The diagram starts with the ini-
tialization of the Random Forest. It then enters a loop where it evaluates the importance of features in the
current feature set. If a feature meets the importance threshold, it is selected as significant, and the feature
set is updated. If not, the feature is eliminated from the set, and the feature set is also updated. This loop
continues until there are no more features to eliminate or until a predefined stopping condition is met. Once
the loop ends, the RF-RFE process concludes, and the diagram depicts the end of the process. RF-RFE is a
systematic approach to select the most relevant features for model training, reducing complexity and improving
model performance.

4. Experimental Study. In order to assess the efficacy of the RF-RFE model in the diagnosis of Acute
Lymphoblastic Leukemia (ALL) [42] using the C_NMC_2019 dataset [43], an experimental study was carefully
planned. The study applied a rigorous 10-fold cross-validation methodology while utilizing the dataset’s richness,
which offers a wide variety of blood smear images indicative of different stages of the disease. This improved
the reliability of the performance evaluation by ensuring that the model was exposed to a variety of training-
test splits. The assumptions have been listed in table 4.1 The performance of the RF-RFE model was then
compared to that of the contemporary models GWO [9] and RESRANDSVM [16]. Precision, recall, specificity,
accuracy, f-measure, and ROC were just a few of the metrics used to provide a thorough understanding of
the models’ capabilities. The goal of this comprehensive evaluation strategy was to reveal the models’ true
predictive power as well as their capacity to balance false positives and false negatives, thereby capturing their
potential real-world applicability in the crucial field of leukemia detection.
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Fig. 4.1: Confusion matrices of 10-fold cross validation performed on proposed model RF-RFE

4.1. The Data. The C_NMC_2019 (Children’s Leukemia Data Challenge 2019) dataset is a valuable
resource for the development of machine learning models aimed at pediatric leukemia diagnosis, encompassing
a total of 12,528 cell images. Among these images, 8,491 represent cases of Acute Lymphoblastic Leukemia
(ALL), a critical cancer subtype, while 4,037 images depict normal cell samples. This dataset’s significant
size and the balanced distribution of cancer and normal cell images make it an ideal choice for robust and
comprehensive model training and evaluation in the domain of pediatric leukemia diagnosis.

For a precise diagnosis, the integrity of medical images, particularly blood smear images, is crucial. How-
ever, in actual situations, a number of factors may add noise to these images. The C_NMC_2019 dataset
intentionally include noise to simulate these imperfect conditions, testing the robustness of the diagnostic al-
gorithms. Intentionally reducing the specificity and sensitivity of the features extracted from the blood smear
images allows for a more thorough assessment of the algorithms being tested. A total of 20,000 cell segments
have been meticulously selected from the source microscopic images of blood smears, comprising an equal distri-
bution of 10,000 cells from leukemia-infected blood smear images and an additional 10,000 cells from the source
images of normal blood smears. This balanced and comprehensive dataset ensures a diverse representation of
both pathological and healthy cell samples, offering a robust foundation for subsequent analyses and research
endeavors.

4.2. Performance analysis. The RF-RFE model, evaluated through 10-fold cross-validation on a dataset
with balanced positives and negatives, consistently demonstrated exceptional performance in leukemia detec-
tion. It achieved high true positives and true negatives across all folds, indicating its proficiency in accurately
classifying both leukemia-infected and normal cells that shown in figure 4.1. With precision values ranging
from 0.9326 to 0.9472 and sensitivity values between 0.932 and 0.949, the model showcased its ability to
minimize false positives while effectively identifying positive instances. Furthermore, its specificity remained
consistently high, varying from 0.932 to 0.948, ensuring reliable negative classifications. The model’s overall
accuracy ranged from 0.934 to 0.945, highlighting its capacity for accurate predictions. The F-measure, be-
tween 0.9323 and 0.9476, struck a balance between precision and recall, while the false alarming rate remained
impressively low at 0.055 to 0.066. With Matthews correlation coefficients ranging from 0.868 to 0.890 and a
false positive rate varying from 0.052 to 0.068, the RF-RFE model consistently exhibited robust and reliable
leukemia detection capabilities across different folds, making it a promising tool for accurate disease diagnosis.
According to the confusion matrices visualized in figure 4.2, the Grey Wolf Optimization (GWO) model demon-
strated robust performance across the ten-fold cross-validation, showcasing its effectiveness in distinguishing
between leukemia-infected and normal blood smear images. With an average accuracy of 92.35%, GWO ex-
hibited a strong ability to correctly classify instances, supported by high precision (93.95%) and sensitivity
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Fig. 4.2: Confusion matrices of 10 fold cross validation performed on contemporary model GWO

(93.05%). The model maintained a well-balanced trade-off between specificity (93.75%) and false positive rates,
indicating its competence in avoiding misclassifications. Additionally, the F1-score of 93.82% highlights the
model’s capability to achieve a harmonious balance between precision and recall. The Matthews Correlation
Coefficient (MCC) of 0.8692 further affirmed its performance. Overall, the GWO model exhibited promising
potential in the task of leukemia prediction, demonstrating consistent and reliable results across different folds
of the dataset. The RESRANDSVM model demonstrates consistent and performance across the 10-fold cross-
validation experiments that visualized as confusion matrices of all 10-folds of the cross validation in figure 4.3.
It exhibits good precision, specificity, and sensitivity, with values consistently above 0.88, indicating a strong
ability to correctly classify both positive and negative cases. The model maintains a high accuracy ranging
between 0.88 and 0.91, demonstrating its effectiveness in overall classification. Furthermore, the F-measure, a
harmonic mean of precision and sensitivity, consistently exceeds 0.88, indicating a balanced trade-off between
precision and recall. The false alarm rate is acceptably low, with values around 0.10, indicating a relatively
low rate of misclassification. The Matthews correlation coefficient (MCC) values range between 0.76 and 0.82,
signifying a moderate to substantial degree of correlation between predicted and actual classifications. Overall,
the RESRANDSVM model showcases a commendable performance in binary classification tasks across various
folds, highlighting its reliability and suitability for the given dataset and problem domain.

4.3. Comparative Study. Precision is an imperative metric that gauges the capability of a classification
model to identify only the relevant data points accurately. High precision suggests that false positives (incor-
rectly identified positives) are minimal. According to the results visualized in figure 4.4, RF-RFE emerges as
a consistent performer with its precision scores maintaining a tight range around the 0.93 to 0.94 mark across
all ten folds. This suggests that its predictions are both accurate and reliable. In contrast, GWO showcases
a slightly broader range of fluctuation. Although its precision peaks around 0.940 in a couple of folds, some
dips to 0.904 highlight pockets of inconsistency. The RESRANDSVM method exhibits the most variability,
with precision scores hovering between 0.87 and 0.90. This indicates a higher propensity to misclassify positive
instances compared to the other two methods.

Specificity is a crucial metric, particularly when the cost of false positives is high. It gauges the accuracy of
a model in identifying negative outcomes. As visualized in figure 4.4, once again, RF-RFE stands out with its
specificity values mirroring its precision scores, ranging mostly between 0.93 and 0.94. Its consistent performance
across both metrics emphasizes its balanced and effective classification capabilities. GWO, on the other hand,
portrays a pattern akin to its precision values. While it achieves commendable specificity scores upwards of
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Fig. 4.3: Confusion matrices of 10-fold cross validation performed on contemporary model RESRANDSVM

Fig. 4.4: graphs representing the performance metrics precision, specificity, accuracy and f-measure of RF-RFE,
GWO, and RESRANDSVM obtained from 10-fold cross validation

0.940 in certain folds, occasional dips towards 0.902 suggest occasional inconsistencies. RESRANDSVM remains
the least consistent across the board, with most of its specificity scores settled between 0.87 and 0.90.

Accuracy, perhaps one of the most intuitive performance metrics, offers a comprehensive overview of a
model’s classification prowess by accounting for both true positives and true negatives. Based in the figure
4.4, RF-RFE consistently achieves the pinnacle of accuracy among the methods, oscillating mainly between
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Table 4.2: The presents a Cross Validation of three Methods: RF-RFE, GWO, and RESRANDSVM, across
four metrics: Precision, Specificity, Accuracy, and F-measure

Metric RF-RFE GWO RESRANDSVM
Precision 0.9398 ± 0.0048 0.9199 ± 0.0145 0.8948 ± 0.0099
Specificity 0.9390 ± 0.0048 0.9186 ± 0.0146 0.8946 ± 0.0101
Accuracy 0.9401 ± 0.0036 0.9230 ± 0.0133 0.8947 ± 0.0074
F-measure 0.9397 ± 0.0048 0.9195 ± 0.0143 0.8946 ± 0.0096

0.934 and 0.945 across the folds. This affirms its ability to make correct predictions reliably. GWO presents
a mixed bag, with accuracy values that diverge notably from one fold to another, spanning from 0.9085 to
0.9435. This variability suggests that its performance might be context-dependent. RESRANDSVM continues
its trend of trailing the pack, managing accuracy primarily in the 0.88 to 0.90 range, indicating potential areas
for improvement.

The F-measure is a composite metric that strikes a balance between precision and recall, offering a more
holistic view of a model’s performance, especially when classes are imbalanced. The consistent brilliance
of RF-RFE is evident once more from the figure 4.4, as its F-measure scores are closely aligned with its
precision, averaging around 0.93 to 0.94. This indicates a harmonious balance between its precision and recall
capabilities. GWO displays scores ranging from 0.9037 to 0.9402, reinforcing the narrative of its slightly
fluctuating performance. Finally, RESRANDSVM hovers in the lower spectrum with F-measure values mostly
between 0.87 and 0.90, reinforcing the notion that it might not be as effective as the other two in the tested
scenarios.

Table 4.2 presents a comparative analysis of three methods: RF-RFE, GWO, and RESRANDSVM, across
four metrics: Precision, Specificity, Accuracy, and F-measure. Each entry is represented by its average value
followed by a deviation. Among the methods, RF-RFE consistently showcases the highest values across all
metrics, with Precision at 0.9398 ± 0.0048, Specificity at 0.9390 ± 0.0048, Accuracy at 0.9401 ± 0.0036, and
F-measure at 0.9397 ± 0.0048. GWO follows closely, while RESRANDSVM tends to have the lowest values in
each category. The deviations also highlight the consistency in the results, with RF-RFE having the smallest
variations, indicating its robust performance.

Sensitivity measures the proportion of actual positives that are correctly identified, which is showcased
in figure 4.5. RF-RFE shows commendable sensitivity, predominantly fluctuating in the range of 0.932 to
0.949 across the folds. This consistent performance indicates that RF-RFE is adept at identifying true positive
cases. On the other hand, GWO exhibits a broader spread ranging from 0.903 to 0.947. While in some folds
it manages to rival RF-RFE, in others, it tends to drop notably. RESRANDSVM lingers mostly in the 0.880
to 0.912 bracket, making it the method with the lowest sensitivity on average. It suggests that of the three
methods, RESRANDSVM might miss a higher proportion of positive instances.

The false positive rate quantifies the proportion of negatives that are mistakenly classified as positive. Lower
FPR values are desirable. As shown in figure 4.5, RF-RFE showcases impressive control over FPR, with values
mainly clustered between 0.052 and 0.068. GWO presents a wider range, oscillating between 0.06 and 0.098,
signifying a slightly elevated risk of incorrectly classifying negatives. RESRANDSVM consistently registers the
highest FPR among the three, with values spanning from 0.091 to 0.129, highlighting its potential vulnerability
in misclassifying negative instances.

Similar in essence to FPR, the false alarm rate gauges the frequency of false alarms that presented in figure
4.5. RF-RFE continues its trend of robust performance with values chiefly contained within the 0.055 to 0.066
bracket. This demonstrates its reliability in curbing false alarms. GWO, while respectable in its performance,
exhibits a tad more variability, spanning 0.0565 to 0.0915. RESRANDSVM again lags, recording rates from
0.0925 to 0.120, signifying its increased likelihood to raise false alarms compared to the other two techniques.

MCC is a balanced metric that considers all values in the confusion matrix, with 1 indicating perfect
prediction, -1 indicating total disagreement, and 0 denoting no better than random prediction. RF-RFE
consistently leads in this metric as shown in figure 4.5, with scores ranging from 0.868 to 0.890, underscoring its
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Fig. 4.5: Graphs Representing the Performance Metrics Sensitivity, FPR, FAR, MCC proposed RF-RFE of the
compared GWO and RESRANDSVM obtained from 10-fold Cross Validation

Table 4.3: Presents a Cross Validation of three methods: RF-RFE, GWO, and RESRANDSVM, across four
metrics: Sensitivity, FPR, FAR, and MCC

Metric RF-RFE GWO RESRANDSVM
Sensitivity 0.9413 ± 0.0061 0.9216 ± 0.0144 0.8961 ± 0.0099
False Positive Rate 0.0615 ± 0.0052 0.0809 ± 0.0151 0.1054 ± 0.0108
False Alarm Rate 0.0602 ± 0.0028 0.0761 ± 0.0133 0.1055 ± 0.0067
Matthews Correlation Coefficient 0.8817 ± 0.0070 0.8461 ± 0.0249 0.7903 ± 0.0158

all-rounded efficacy. GWO follows suit with values mostly between 0.817 and 0.887, suggesting a commendable
yet slightly more varied performance. RESRANDSVM, while not too far behind, predominantly hovers in the
0.7601 to 0.815 range. This indicates that, on average, its predictions might be somewhat less correlated with
the actual outcomes compared to the other two methods. In the comparative analysis based on the metrics
provided in the table 4.3, the RF-RFE method consistently showcased superior performance across all metrics
when compared to GWO and RESRANDSVM. Specifically, for Sensitivity, RF-RFE averaged 0.9413, which
was higher than GWO’s average of 0.9216 and RESRANDSVM’s average of 0.8961. Similarly, RF-RFE also
exhibited the lowest False Positive Rate and False Alarm Rate among the three methods, indicating a lower
likelihood of erroneous classifications. In terms of the Matthews Correlation Coefficient, which measures the
quality of binary classifications, RF-RFE again outperformed with an average score of 0.8817. Overall, while
all three methods yielded commendable results, RF-RFE stood out as the most effective in this analysis.

4.3.1. Precision-Recall (PR)-Curve. Precision-Recall (PR) curves that presented in figure 4.6, provide
an insightful way of examining the performance of classification algorithms, particularly in scenarios where
classes are imbalanced. They plot the trade-off between the positive predictive value (precision) and the true
positive rate (recall/sensitivity), providing a holistic view of an algorithm’s ability to distinguish between classes.
In our comparative evaluation of the PR-curves for RF-RFE, GWO, and RESRANDSVM methods, distinct
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Fig. 4.6: PR-Curve of RF-RFE, GWO, and RESRANDSVM Methods Derived from 10-Fold Cross Validation.

trends are observed. RF-RFE stands out with a consistently superior performance, demonstrated by its steeper
ascent in the curve, which implies a robust capability to maintain high precision across diverse sensitivity
levels. GWO, though exhibiting some fluctuations suggesting potential variances in precision at different recall
intervals, still holds a notable position in the analysis. RESRANDSVM, while displaying a more equilibrated
precision-recall trade-off, might not reach the precision peaks of RF-RFE. Analytically, RF-RFE emerges as
the top performer in this comparison, suggesting that it’s likely to produce fewer false positives for a given
recall threshold. However, each method brings its strengths and weaknesses, reinforcing the importance of
using PR-curves in understanding the nuances of classifier performance.

4.3.2. Receiver Operating Characteristic (ROC)-Curve. The ROC-Curve that shown in figure 4.7
is a graphical representation of the true positive rate (Sensitivity) against the false positive rate for various
threshold values. An ideal method would yield a point in the upper-left corner of the ROC space, representing
100% sensitivity and 0% false positive rate.

From the provided data, RF-RFE demonstrates higher sensitivity across almost all folds compared to the
other two methods, especially when false positive rates are low. This means that RF-RFE is potentially better
at discriminating between the positive and negative classes. GWO, on the other hand, shows competitive
sensitivity values but often at the cost of higher false positive rates. The RESRANDSVM method appears to
have the lowest sensitivity values among the three methods in most of the folds, suggesting it might have a
lower discriminative ability in this specific context.

5. Conclusion. A sophisticated machine learning and image processing method for blood cancer predic-
tion from blood smear images, the RF-RFE model, was introduced in this study. Blood cancer diagnosis, espe-
cially Acute Lymphoblastic Leukemia, has improved with RF-RFE’s clarity and precision. Our model greatly
improves leukemia detection efficiency and accuracy. Its ability to reduce redundancy in high-dimensional med-
ical imagery data makes RF-RFE unique. The feature set of modern models like GWO [9] and RESRANDSVM
[16] is optimised by RF-RFE in detail. Specificity, Accuracy, Precision, and F-measure are a set of performance
metrics. It shows the model’s dependability. Our extensive analysis showed RF-RFE’s precision and low binary
classification errors. Further comparisons of Sensitivity, False Positive Rate, False Alarm Rate, and Matthews
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Fig. 4.7: ROC-curve of RF-RFE, GWO, and RESRANDSVM Methods Derived from 10-Fold Cross Validation
.

Correlation Coefficient show the model’s precision and ability to balance false positives and negatives. Grey
Wolf Optimization, Bayesian-based CNNs [14], and GLCM [6] are impressive, but RF-RFE stands out. Strate-
gically integrating the XGBoost algorithm, RF-RFE sets the standard for ALL diagnosis and biological data
analysis. Due to its unique approach and optimized feature set, it is a blood cancer diagnostic breakthrough
with consistent performance across diverse datasets. Early blood cancer detection, especially for ALL, is trans-
formed by the model’s false positive and negative ability. Many medical diagnostics applications and research
are promising with RF-RFE. Adapting RF-RFE for multi-class classification will increase its applicability and
help us understand subtype-specific treatment approaches for blood cancer. High-dimensional feature values can
be handled without affecting predictive quality with advanced dimensionality reduction. These improvements
may enhance RF-RFE’s medical diagnostic performance, relevance, and applicability.

REFERENCES

[1] Y. M. Alomari, S. N. H. Sheikh Abdullah, R. Z. Azma, and K. Omar, Automatic detection and quantification of WBCs
and RBCs using iterative structured circle detection algorithm, Computational and mathematical methods in medicine,
2014.

[2] Blood Smear Test, Available at: https://www.testing.com/tests/blood-smear/.
[3] S. Fathima, P. Meenatchi, and A. Purushothaman, Comparison of manual versus automated data collection method for

haematological parameters, Biomedical Journal of Scientific & Technical Research, 15, no. 3 (2019), pp. 11372-11376.
[4] W. Jiao, X. Hao, and C. Qin, The image classification method with CNN-XGBoost model based on adaptive particle swarm

optimization, Information, 12, no. 4 (2021), p. 156.
[5] X. Ren, H. Guo, S. Li, S. Wang, and J. Li, A novel image classification method with CNN-XGBoost model, In: Digital Foren-

sics and Watermarking: 16th International Workshop, IWDW 2017, Magdeburg, Germany, August 23-25, Proceedings
16, Springer International Publishing, 2017, pp. 378-390.

[6] A. Muntasa, and M. Yusuf, Multi Distance and Angle Models of the Gray Level Co-occurrence Matrix (GLCM) to Extract
the Acute Lymphoblastic Leukemia (ALL) Images, International Journal of Intelligent Engineering & Systems, 14, no. 6
(2021).

[7] Classification of Acute Lymphoblastic Leukemia on White Blood Cell Microscopy Images Based on Instance Segmentation
Using Mask R-CNN.



2000 G. Chinna Pullaiah, P.M. Ashok Kumar

[8] Z. Moshavash, H. Danyali, and M. S. Helfroush, An automatic and robust decision support system for accurate acute
leukemia diagnosis from blood microscopic images, Journal of digital imaging, 31 (2018), pp. 702-717.

[9] N. M. Sallam, A. I. Saleh, H. A. Ali, and M. M. Abdelsalam, An efficient strategy for blood diseases detection based
on grey wolf optimization as feature selection and machine learning techniques, Applied Sciences, 12, no. 21 (2022), p.
10760.

[10] G. E. Atteia, Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis,
Computer Systems Science & Engineering, 45, no. 1 (2023).

[11] P. Manescu, et al., Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free
deep learning, Scientific Reports, 13, no. 1 (2023), p. 2562.

[12] S. Praveena, and S. P. Singh, Sparse-FCM and Deep Convolutional Neural Network for the segmentation and classification
of acute lymphoblastic leukaemia, Biomedical Engineering/Biomedizinische Technik, 65, no. 6 (2020), pp. 759-773.

[13] A. T. Sahlol, A. M. Abdeldaim, and A. E. Hassanien, Automatic acute lymphoblastic leukemia classification model using
social spider optimization algorithm, Soft Computing, 23 (2019), pp. 6345-6360.

[14] G. Atteia, et al., Bo-allcnn: Bayesian-based optimized cnn for acute lymphoblastic leukemia detection in microscopic blood
smear images, Sensors, 22, no. 15 (2022), p. 5520.

[15] A. M. Abdeldaim, A. T. Sahlol, M. Elhoseny, and A. E. Hassanien, Computer-aided acute lymphoblastic leukemia
diagnosis system based on image analysis, Advances in Soft Computing and Machine Learning in Image Processing, 2018,
pp. 131-147.

[16] A. Sulaiman, et al., ResRandSVM: Hybrid Approach for Acute Lymphocytic Leukemia Classification in Blood Smear
Images, Diagnostics, 13, no. 12 (2023), p. 2121.

[17] T. Chen, et al., Xgboost: extreme gradient boosting, R package version 0.4-2, 1, no. 4 (2015), pp. 1-4.
[18] A. Herod, Scale, Routledge, 2010.
[19] B. K. P. Horn, Relative orientation, International Journal of Computer Vision, 4, no. 1 (1990), pp. 59-78.
[20] J. J. Gabszewicz, and J.-F. Thisse, Location, Handbook of game theory with economic applications, 1 (1992), pp. 281-304.
[21] C. Owsley, Contrast sensitivity, Ophthalmology Clinics of North America, 16, no. 2 (2003), pp. 171-177.
[22] J. Thewlis, S. Albanie, H. Bilen, and A. Vedaldi, Unsupervised learning of landmarks by descriptor vector exchange, In:

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6361-6371.
[23] Y. Hou, J. Li, and Y. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra, 51, no. 1 (2003),

pp. 21-30.
[24] R. E. Kirk, The importance of effect magnitude, Handbook of research methods in experimental psychology, 2003, pp. 83-105.
[25] P. H. Pelham, and J. G. Dickson, Physical characteristics, The wild turkey: biology and management, Stackpole Books,

Mechanicsburg, Pennsylvania, USA, 1992, pp. 32-45.
[26] E. Miyamoto, and T. Merryman, Fast calculation of Haralick texture features, Human computer interaction institute,

Carnegie Mellon University, Pittsburgh, USA, Japanese restaurant office, 2005.
[27] J. R. Movellan, Tutorial on Gabor filters, Open source document, 40 (2002), pp. 1-23.
[28] B. Bein, Entropy, Best Practice & Research Clinical Anaesthesiology, 20, no. 1 (2006), pp. 101-109.
[29] J. Theiler, Estimating fractal dimension, JOSA A, 7, no. 6 (1990), pp. 1055-1073.
[30] T. Lindeberg, Scale invariant feature transform, 2012, p. 10491.
[31] A. Bundy and L. Wallen, Difference of gaussians, Catalogue of Artificial Intelligence Tools, (1984), p. 30.
[32] U. Ziegler and P. Groscurth, Morphological features of cell death, Physiology, 19, no. 3 (2004), pp. 124-128.
[33] S. V. Bino, A. Unnikrishnan, and K. Balakrishnan, Gray level co-occurrence matrices: generalisation and some new

features, arXiv preprint arXiv:1205.4831, (2012).
[34] J. A. Sebastian, M. J. Moore, E. S. L. Berndl, and M. C. Kolios, An image-based flow cytometric approach to the

assessment of the nucleus-to-cytoplasm ratio, PLoS One, 16, no. 6 (2021), e0253439.
[35] S. J. Rigatti, Random forest, Journal of Insurance Medicine, 47, no. 1 (2017), pp. 31-39.
[36] X.-w. Chen and J. C. Jeong, Enhanced recursive feature elimination, In Sixth international conference on machine learning

and applications (ICMLA 2007), IEEE, 2007, pp. 429-435.
[37] J. Kim, H. Lee, M. Imani, and Y. Kim, Efficient Hyperdimensional Learning with Trainable, Quantizable, and Holistic Data

Representation, In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2023, pp. 1-6.
[38] H. Barlow, Redundancy reduction revisited, Network: computation in neural systems, 12, no. 3 (2001), p. 241.
[39] L. Breiman, Out-of-bag estimation, (1996).
[40] M. Onciu, Acute lymphoblastic leukemia, Hematology/oncology clinics of North America, 23, no. 4 (2009), pp. 655-674.
[41] The Cancer Imaging Archive, Available at: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758223.

Edited by: S. B. Goyal
Special issue on: Soft Computing and Artificial Intelligence for wire/wireless Human-Machine Interface
Received: Oct 13, 2023
Accepted: Jan 23, 2024


