
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 4, pp. 387–400, DOI 10.12694/scpe.v22i4.1870

A METHOD TO IMPROVE EXACT MATCHING RESULTS IN COMPRESSED TEXT
USING PARALLEL WAVELET TREE

SHASHANK SRIVASTAV∗, PRADEEP KUMAR SINGH†, AND DIVAKAR YADAV‡

Abstract. The process of searching on the World Wide Web (WWW) is increasing regularly, and users around the world
also use it regularly. In WWW the size of the text corpus is constantly increasing at an exponential rate, so we need an efficient
indexing algorithm that reduces both space and time during the search process. This paper proposes a new technique that utilizes
Word-Based Tagging Coding compression which is implemented using Parallel Wavelet Tree, called WBTC_PWT. WBTC_PWT
uses the word-based tagging coding encoding technique to reduce the space complexity of the index and uses a parallel wavelet
tree which reduces the time it takes to construct indexes. This technique utilizes the features of compressed pattern matching to
minimize search time complexity. In this technique, all the unique words present in the text corpus are divided into different levels
according to the word frequency table and a different wavelet tree is made for each level in parallel. Compared to other existing
search algorithms based on compressed text, the proposed WBTC_PWT search method is significantly faster and it reduces the
chances of getting the false matching result.

Key words: Parallel computing, Wavelet Tree, Compressed Text Matching, Text Searching, Word-Based Tagged Coding,
Compressed Indexing.

AMS subject classifications. 68W10

1. Introduction. In recent years, the production of a wide variety of devices such as powerful laptops,
tablets, Wi-Fi TVs, various electronic gadgets and other mobile devices has been growing rapidly in the field
of information technology. All these devices can connect directly to the Internet and create large amounts
of data and search within the produced data [14][35]. This is an example of how we are living in an era of
information explosion. If the size of the data is too large, it becomes a costly affair to store, process, retrieve
and communicate data on such a large scale. Therefore, we need to do data compression to manage those huge
data. Compression of data brings stability to the data and renders it in the minimum number of bit-space. The
compression of data involves the process of data-encoding and data-decoding. This article uses the term data
packing to refer to encoding and the term data un-packing to refer to decoding.

String matching is a method of identifying all possible pattern (string/substring) events from a large text
corpus. String matching features are used in various applications for information retrieval, big data, text
mining, plagiarism checking, DNA matching, and more. Compressed pattern matching (CPM) is known as
a process of matching string in compressed data. CPM [2][20][27] is a process in which string matching is
performed directly on compressed text without the need for decompression. Compared to other algorithms,
CPM supported compression algorithms are considered more effective. During the decompression process, CPM
saves time wastage and reduces search time. To save disk space, CPM algorithms are used and is also used to
transfer a vast amount of information over a data network. CPM is introduced using the Lempel – Ziv – Welch
(LZW) compression technique in [1] by Aamir et al. The CPM problem is to observe and reveal each event of P
in T, in O(u + m) time, using only P and Z, the material T, where u is the length of compressed material Z and
m is the length of an example pattern P. The upside of CPM is that instead of matching it to unpacked records,
it directly matches the instance in the packed document and thus optimizes the search time. Later CPM is
developed by M. Farch et al. [9] using the LZ77 compression process. For large text databases, compression
based on the Huffman technique is not considered efficient, as one achieves a lower compression ratio using

∗Department of Computer Science and Engineering, MMMUT Gorakhpur, India. (shashank07oct@gmail.com).
†Department of Computer Science and Engineering, MMMUT Gorakhpur, India.(topksingh@gmail.com).
‡Department of Computer Science and Engineering, NIT Hamirpur, India.(divakaryadav@nith.ac.in) .

387

388 Shashank Srivastav, P. K. Singh, Divakar Yadav

the Huffman compression technique. On the other hand, LZW family compression techniques (LZW77, LZ78,
etc.) produce a very good compression ratio, but the problem is that they cannot be considered efficient when
searching for patterns directly in the packed content. Various techniques can be used to solve this problem. In
[8][24], CPM is performed using straight-line software (SLP). The SLP uses a plot based on the structure of
the sentence. The run-length encoding (RLE) approach suggested in [7] is used as an example for matching,
where template matching was designed using Boyer Moore [3] and Knuth Morris Pratt (KMP) [22].

In [36], the authors introduce procedures for searching in packed data for Huffman’s text. To fit the
example material inside the compressed material, they used KMP measurements, but the correct match is not
reliably distributed. One of the problems with this packing technique is false matching, as stated in [36] that
the Huffman character packing technique is modified to handle words, and example patterns to execute CPMs.
There are more problems of false matching in this situation. The word-based Huffman coding is said to be using
bytes instead of bits [32]. In this approach, each specific word in a sample pattern is packed with a combination
of bytes instead of bits. Words are packaged with either 128 bits (“tagging-Huffman packaging”) or 256 bits
(“plain-Huffman packaging”). For the first byte of each word-code of the tagged Huffman package, the 7 least
significant bits are used for the Huffman packaging, and the most significant bit is used as the guard bit. Each
guard bit used in the word-code is to distinguish its code from other word-codes and to mark the beginning
of the code for each word. Thus, the use of this technique easily detects mismatch cases, and the use of bytes
does not affect the efficiency of the packaging technique. This technique allows un-packaging of the content at
any time and a pattern can also be searched effectively. The word-based Huffman packaging technique treats
word-models without spaces.

The work depicted in [16][18] has implemented a new packaging technique, known as word-based tagging
coding (WBTC), which enables to pack the contents partially and from any subjective position using the marked
bit, enables the material to be easily unpacked. It also supports CPM and can quickly detect false matches.
WBTC is a packaging technology that views the word as its basic unit of compression. At each level, each word
present in the material has a fixed number of bits. As with other common packing techniques it often gives us
false matches in the CPM process. WBTC can also suffer from false matching problems. In [17], the matched
strategy uses a linear search on the packaged material but if the material is extensive then this process becomes
an expensive one. WBTC codes are generally longer than most methods for packing.

An advanced data structure, the wavelet tree (WT), is used to represent and react to sequences. This data
structure is space-efficient and can be used to construct indexes. It supports the rank operation, which detects
the occurrence of the word and the select operation, which detects the position of the word and executes these
operations within O (1) time. WT has been used previously in [15] and is known as a data structure that can
be used as self-indexed, which can be constructed for characters or words, respectively. Various symbols are
available on a WT leaf, which is either the character or the word. As seen in [25][28], WT can be used for text
indexing as well as spatial search. The workings of WT indexing are explained in [34] using a set of documents
on WWW.

1.1. Motivation, Contribution and Organization of paper. In WWW the size of the text corpus
is increasing at an exponential rate, so an efficient algorithm is needed that can reduce the time taken during
the search process. Due to the large data size, it uses a lot of memory space in the device. So, we need to do
data compression to solve the space problem. CPM is one of the ways to reduce data space and provide search
options. Many research articles have been studied to address the CPM problem, but both compression and
search methods can be further improved. Several CPM solution algorithms have been developed and are given
in [2] [12] [15] [18] [17] [16] [19] [20] [21] [8] [36]. The algorithms are given in [12] [15] [21] [20] work efficiently
in search but do not provide a good compression ratio. On the other hand, algorithms given in [18] [16] [17]
[19] [36] provides a good compression ratio but fail to provide correct matches. Thus, an algorithm should be
proposed that provides a decent compression ratio and an accurate search procedure without getting incorrect
results.

This paper proposes a word-based compression as well as word-based indexing of text content. As regards
the number of bits, the word compression technique provides much better results than the compression technique
for characters given in [32], so we choose word-based compression and create indexes using WT. The main
contributions of this paper are as follows:

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 389

Table 2.1: Huffman word codes for content T

S. No. Words Frequencies Huffman word-Codes

0 Indian 3 1

1 a 2 011

2 good 2 010

3 is 1 0011

4 for 1 0010

5 all 1 0001

6 always 1 0000

• Study of existing word-based compression techniques with examples and study about the possibility of
mismatch results in CPM.

• An indexing approach is proposed with the help of WBTC and WT which efficiently solves the CPM
problem with no mismatch results.

• Compares the results of the proposed method with the other word-based compression techniques used
to solve the problem of CPM.

• The proposed approach can handle both single text patterns and multiple text patterns very efficiently.
Other parts of the paper are organized as follows. The basics and related functions are described in Section

2. Section 3 contains a description of the WBTC_PWT technique. Experimental analysis and demonstration
are described in Section 4. Finally, Section 5 describes the conclusions of the proposed algorithm and its future
work.

2. Basics and Related Work. In this section, we only focus on the word-based packing technique that
supports CPM so that we can search for any query text directly in the packed file. CPM supported word-based
techniques include Huffman Packing, WBTC Packing and WT. Here we describe the Huffman packing and
WBTC packing methods used exclusively for words and illustrate with examples of how codes are assigned to
words in these techniques. Here we also understand WT and how to use it to efficiently search for words in
packaged content.

2.1. Huffman Technique of Word-Packing. The Huffman technique uses a clever method to generate
packing variable length codes. It is naive to the number of words that are most visible in corpus material. If
the frequency of a word increases, we use the least number of bits in the code of that word and vice versa. So,
we use this packaging method to reduce the size of the content. In [32], insight into the design of the Huffman
word coding is presented. Precedent 1 illustrates the strategy used in Huffman word coding.

Precedent 1. Let’s take any material like T = ”a good Indian is always a good Indian for all Indian”. The
above sentence is formed from a collection of ‘a’, ‘always’, ‘all’, ‘for’, ‘good’, ‘Indian’, ‘is’. We use the Huffman
word-based compression technique to derive the code for each word as presented in Table 2.1. For packing
purposes, we only expect a space-less content format. When the word ends with space in a space-less content
format, no changes are made to the word’s code and for another word that ends with a separator (such as colon,
semicolon, comma, etc.), then the word and the separator both are coded separately. Compressed content T’
of content T is encoded using Table 1 and is represented as T’ = 011 010 1 0011 0000 011 010 1 0010 0001 1,
that requires 31 bits. If the same material is compressed using Huffman character packing, so it needs 139 bits
to represent T in compressed form. This precedent reflects a huge improvement in bit requirement by using
the Huffman word packing on the Huffman character packing.

Depending on the number of bits used for packing, the Huffman packing is divided into two parts - binary
and plane. Each word is packaged using 128 bits or 256 bits according to the byte-oriented Huffman packaging
technique. When using 128 bits, it is called binary Huffman and when using 256 bits, it is called plain Huffman.
As [32] suggested, byte-oriented Huffman packaging technology uses bytes instead of bits without violating the
efficiency of packing and promotes unpacking faster than binary Huffman code. We consider only seven lower
bits for each byte in a packing made by binary Huffman-tagging, and these 7 bits are used for packing. In
each byte, code the most significant bit (MSB) with the following rule: MSB should be 1 for the first byte

390 Shashank Srivastav, P. K. Singh, Divakar Yadav

Table 2.2: WBTC Code for content T

Indexes Unique-Words Frequency Word-Codes

0 Indian 3 01

1 a 2 10

2 good 2 0001

3 is 1 0010

4 for 1 1101

5 all 1 1110

6 always 1 000001

of the word-code and 0 for the remaining bytes. In this method by this rule, we mark the beginning of each
word in the packaged content, which encourages the example text to be properly searched within the packaged
material. The plane Huffman-tagging packing is also like the binary Huffman-tagging packing, except that it
allocates 256 bits to a word-code. Tagged-Huffman’s packing may lose some of its data due to the extra bit
used to identify the beginning of a word, so we prefer to use plain Huffman packing because it has a greater
number of bits.

2.2. Word-Based Tagging Code (WBTC). WBTC is an efficient tool for compression developed by
[18][16]. They have built compression techniques used for dynamic datasets. In this technique, the term has
been considered an effective compressed unit rather than a character. This preserves each highlight of sub-
optimal code with optimal compression ratios. The risk of mismatch is also low, and it is possible to see the
pattern directly in the compressed text. Precedent 2 indicates the coding methodology. Here are the steps that
have been taken during the coding process:

Step 1: For m=1, the first 2m unique terms of a text corpus are given a pair of bits as ‘10’ and ‘01’. (level-1)
Step 2: In each code created in the previous step, we add prefix pairs ‘11’ and ‘00’ and code the next group

of 2m words. (m=2) (level-2)
Step 3: Utilizing steps above one can normalize the encoding method by adding prefix pairs 11 and 00 of each

code created in the last level, we code the 2m words in the next level. (level-m).
Step 4: Steps 1–3 is used repeatedly until the encoding of all the words are performed.

Precedent 2. We again use content T = ”a good Indian is always a good Indian for all Indian”. We perform
the coding of all unique words in the above material T using the WBTC packing technique, and the assigned
codes are shown in Table 2.2. Now compressed content T’ is given as T’ = 10 0001 01 0010 000001 10 0001 01
1101 1110 01. Here we see that only 36 bits are required to represent the contents of T by the WBTC technique.
As seen earlier in precedent 1, the Huffman-word packaging requires 31 bits to represent this content T. WBTC
entropy is higher than Huffman word packing for smaller corpus, but the chances of false matching are higher
in Huffman word packing compared to WBTC. So, WBTC is an efficient and powerful packaging technique for
compressing large volumes of text data.

Searching stage: Inside the compressed content, the search request for the word ‘W’ is completed with the
steps below:

Step 1: We first see the word-code C of W that the WBTC coding method assigns.
Step 2: Word-code C is now used to execute CPM by the linear search.

The bit-pairs ’01’ and ’10’ are used as a marker to detect the end of the word-code. For the rest of the words
in the next level, the concatenation of bits ’11’ or ’00’ is used as a prefix. WBTC codes are prefix-free, so we can
easily identify the beginning and end of each unique word-code. Therefore, the chance of false matching is very
low. Assume that sub-string g is postfix of the following string h, e.g. h = fg in which fϵ

∑

∗ and |g| ≤ |h|.
For instance, assume h is given in space less model as h = bcadcaabcacba and we pick g = abcacba from h.
Since g is postfix of string h, thus it can be shown as g!h. Assume now that x and y are the word-codes provided
to h and g given as x = 1100110001 and y = 0001. Here, y is the postfix of x. Thus, it can be deduced that

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 391

Table 2.3: Words with their corresponding codes

Words Word-Codes

good 45 41

Indian 23 25 18

always 25 18

is 41 23 25

the WBTC packing codes are not free of prefixes and thus it is very important to verify whether the match is
correct or not. We must confirm whether the match is correct or not. Suppose the word is located at the ‘i’
position in the packed material. To check this, we must scan the bit pairs before this location ‘i’. The match
is true if we find 10/01 for the last two bits. The same if we find that the last two bits are 11/00, then the
match is not correct. In this way, total match results and fake matches can be obtained quickly. For example,
consider searching for the query word Q = ‘Indian’ in the content T above, in the packaged content T’, first
we can find that the WBTC word-code for Q is ‘01’. After that, in the compressed material T’, we are looking
for the word-code 01 directly in T’ = 10 0001 01 0010 000001 10 0001 01 1101 1110 01

We find that the word ‘Indian’ (word-code = 01) is mixed in packed content T’ at three places. The other
word-code ‘01’ matches like ‘0001’, ‘000001’, ‘0001’ and ‘1101’ are invalid matches because they do not consist
of either ‘01’ or ‘10’ as consecutive bit-pairs before matching positions. Here we see that by using WBTC
compression we can directly search into packaged content without the need for decompression and WBTC
provided codes have less chance of a faulty matching, as shown in [26].

2.3. False Matching in CPM. The codes provided by the different packaging methods are free of
prefixes. The compression ratio may be okay, but the main objective of these approaches is not to perform a
search directly within the packaged content, as it may result in an invalid match. Precedent 3 addresses how
to obtain false matching [32] [12] [19] in the CPM method.

Precedent 3. Suppose the content consists of words that are ‘Indian’, ‘good’, ‘always’ and ‘is’ and Table 2.3
shows the codes assigned to these words using some packing technique like Huffman. We have used numbers in
the place of bits to better understand the problem. Now suppose a query content T and its compressed content
T’ is given as follows:

T: ‘good Indian’
T’: 45 41 23 25 18

We examine that the words ‘always’ and ‘is’ do not appear in the content T yet their word-code (25 18)
and (41 23 25) are in T’, indicating that ‘always’ and ‘is’ might match in T’, but in reality, they do not appear
in T, and when that happens, we conclude that this is an invalid match.

2.4. Wavelet Tree (WT). WT [15], a data structure with space efficiency which represents a series of
queries and answers them properly. For representing sequences, rearranging elements, a point grid, and others,
a WT can be utilized. We can retrieve any content at any time by retaining the content’s index [5]. Authors
implemented different WT forms in [4][28] and they completed their work and performed different types of tasks
on WTs. The function of WT can be understood by performing the following functions: the number of events
(to count the number of a symbol present in the source material), position (in the source material, find the
correct position of any symbol), and Show (in the source material, show the symbol’s status). All important
tasks are implemented with these simple bit-map operations such as rank and select. In [6], we briefly addressed
the efficiency of rank and select operations. For any given bitmap sequence M, rankc(M, i) = the frequency
of symbol c up to ith location in M[1..n] and selectc(M, i) = index of the ith case of symbol c in M[1...n]. For
e.g. bitmap is M = 1010100101011, then rank0(M, 10) = 5 and select1(M, 3) = 5. The compressibility of the
content and its advantages are established in [10][29]. We can also create WTs with compressed content. You
will find various letter/word symbols on the WT leaf. Insights are given in [15] on the creation of WT. A new
indexing model with the properties of the WT has been developed. The greatest advantage of constructing

392 Shashank Srivastav, P. K. Singh, Divakar Yadav

Fig. 2.1: Pre-processing before Construction of PWT.

indexes using the data structure of the WT is that it is much less complex than other data structures, such as
the B tree and the B+ tree. The downside to WT is that it takes a lot of time to create it. Various studies
have recommended several construction paradigms. The WT is constructed sequentially or parallelly, and each
has its problems. We choose a parallel WT structure to reduce the development time of WT.

There are bunches of hypothetical work on the parallel construction of the WT. [13] performed the creation
of a parallel WT for the first time. The authors suggest the use of a maximum of log σ processors to construct
WT using two linear-time algorithms of O(n) in parallel. The complexities of the solution are O(n) for depth
and O(σ log n) for work. In 2015, A new algorithm for the creation of parallel WT has been introduced by
[30]. In this work the construction of the WT is done level by level, requiring O(log n) time for depth per
level and O(n) time for work. If there is σ number of levels in the WT, the complexities of the solution are
given as O(log n log σ) time for depth and O(n log σ) time for work. [23] recommended a different strategy,
which is a more space-efficient algorithm than the work of (Shun, 2015) but achieved the same complexity and
limitation. The only difference is that Shun has used a 40-core processor to implement his algorithm, while J.
Labeit has used a 64-core processor for his algorithm. An additional improvement is achieved by the recursive
implementation of the algorithm rather than done using level by level. In [31], the author used parallel integer
sorting methods to improve the work [30] proposed by himself and reduced his work up to O(σ + log n) for

depth and O(n
⌈

log σ/
√

(log σ)
⌉

) for work. The fastest sequential and parallel construction of the WT has

been introduced in [11]. The text size n has been divided into θ(n/p) and it has been allocated to each p-core
of the system. However, it takes O(n log σ) work and O(n) time to construct the WT parallelly and it also
needs 4σ ⌈log n⌉ in bits separately for input and output operation.

This segment reflects on how data packing is achieved and what are the issues with compression. The value
of using the word as the essential compressive element in place of characters has been shown. Here we see
that the word packing of Huffman is fast, and it requires less memory in the number of bits. WBTC packing
is also a good method and more efficient than the Huffman methods of packing. Both Huffman and WBTC
packing may give false matching results when we use it with the CPM quick-search mechanism. We also see
the different WT construction approaches as we use WT to execute our WBTC packing and create the tree
with multi-core computer architectures in parallel.

3. The WBTC_PWT Approach. We already understand that the data size is growing nearly every
day, so it is very challenging to find any text faster. Therefore we need a data-set size reduction algorithm,
which will take up less space for storing data, and will also allow a quick search. For this, we parallelize WT
using the multi-core architecture of the computer and we use the WBTC packing technique with the help of
WT. The idea is to divide our data-set into several unrelated sets by dividing the word-frequency table into
several levels. Each level of words is assigned to a specific core of the multiprocessor computer, and each core

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 393

forms a level of parallel WT. At the end of the algorithm, we logically add each small WT to create the final
WT of the entire content.

Algorithm 1: Fast creation of WT

Input: Suppose there is an ‘X’ level in word-frequency tables.
In each small partition table T,

Unique-words −→ uw1, uw2, uw3 ………… uwn.
Word-codes −→ wc1, wc2, wc3 ………… wcn.

Result: ‘X’ number of WTs.
Method:

1: Par-For r ←− 0 to X-1 do (assign each small table partitions to a core)
2: For s ←− 1 to n do (at each core)
3: Ps,r ←− first prefix pair of word-code wcs;
4: Insert As,r in Root(Tr) of WT;
5: Present_Node ←− Root(Tr);
6: t ←− 2;
7: While (until word-code wcs is not empty) do
8: Ps,t ←− next prefix pair bits of wcs ;
9: If (Ps,t−1 == “00”) then

10: Present_Node ←− L-child (Present_Node);
11: Elseif (Ps,t−1 == “11”) then
12: Present_Node ←− R-child (Present_Node);
13: Else
14: Insert Ps,t into Present_Node;
15: End If
16: t ←− t+1;
17: End While
18: End For
19: End Par-For

Every WT is combined level by level starting from the root node in such a way that all the root nodes of
small WTs have to be included in the final WT such as bitmaps of all the root nodes are combined to form
the root node’s final bitmap and based on the prefix pair of bits, we then determine left and right subtree of
the root of the final WT. This process is repeated for all the other nodes as well. To construct a WT S, the
entire corpus is divided by first dividing the word-frequency table level-wise and then assigning each partition
to a single core using a parallel for loop. The fastest sequential WT creation method given in [11] is applied to
each core, and different WTs are formed for each level of words parallelly. We perform pre-processing on the
text corpus, as shown in Fig 2.1, and use Algorithm 1 to build WT faster.

After the completion of Algorithm 1, each small WTs are combined in such a way that roots of all small
WTs are combined using their prefix pair code-words to form the root of final WT, next L-child of root for all
the small WTs are combined to form the L-child of final WT, and the same process is repeated for the R-child
too. This process is followed for all the levels present in the small WT until each node of all small WTs does
not merge into the final WT.

Pattern search: Whenever a search request comes for a pattern, then we perform the pre-processing for
finding the WBTC code of the query word or pattern. If the word is not found in the word frequency table,
we can conclude that it does not appear in the source content T, and there is no need for further processing.
Once we find the WBTC code of all the words present in the query pattern from the word-frequency table, we
load the final WT into the computer’s primary memory. Now we use Algorithm 2 to find the position of the
query pattern in the compressed text corpus.

To better understand the proposed strategy, we consider the same previously used textual content T given
as ”a good Indian is always a good Indian for all Indian”. We now perform pre-processing according to the steps
shown in Fig 2.1 and apply Algorithm 1. Each unique word that is in T is stored in the word-frequency table
according to their frequency and divides the word-frequency table into levels. We now provide the WBTC code

394 Shashank Srivastav, P. K. Singh, Divakar Yadav

Algorithm 2: Fast Matching

Input: Word-code ‘wc’ of each query words.
Result: The exact position of each word and its occurrence in the packed text corpus.
Method:

1: For each unique wc do
2: B0 ←− Root (T); (T is the root of Final WT)
3: P0 ←− find the first prefix pair from word-code wc;
4: r ←− 0;
5: While (Pr != “01” and Pr != “10”) do
6: If (Pr == “00”) then
7: Br+1 ←− L-child (Br);
8: Else
9: Br+1 ←− R-child (Br);

10: End-If
11: r ←− r+1;
12: Pr ←− find the r

th prefix pair bits from wc;
13: End While
14: Nocc ←− RankPr

(Br, |Br|);
15: For k ←− 1 to Nocc do
16: pos ←− SelectPr

(Br, k);
17: level ←− r;
18: While (Blevel != Root(T)) do
19: level ←− level – 1;
20: Blevel ←− Parent (Blevel+1);
21: If (Blevel+1 == L-child (Blevel)) then
22: Plevel ←− 00;
23: Else
24: Plevel ←− 11;
25: End If
26: pos ←− SelectPlevel

(Blevel, pos);
27: End While
28: display k

th occurrence of the word at pos;
29: End For

Table 3.1: WBTC codes for all the words level by level

Levels Words in each level Indexes Words Frequencies WBTC Codes

Level 1 2
1 words 1 Indian 3 01

2 a 2 10

Level 2 2
2 words 3 good 2 0001

4 is 1 0010
5 for 1 1101
6 all 1 1110

Level 3 2
3 words 7 always 1 000001

for the words present at all levels, as shown in Table 3.1. The example pattern has three levels, and all three
levels are assigned to multi-core systems for constructing three different WTs, as shown in Fig 3.1, Fig 3.2 and
Fig 3.3.

All three WTs are combined to form the Final-WT because this Final-WT is used for matching a query
pattern directly on the compressed text. After the WBTC packing, the example content T may look like T’ =
10 0001 01 0010 000001 10 0001 01 1101 1110 01, and its Final WT is shown in Fig 3.4.

Matching and searching: Using the WBTC_PWT approach we search if the word ‘always’ is found or not

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 395

Fig. 3.1: WT for Level 1.

Fig. 3.2: WT for Level 2.

in the textual material T, and if it is found in T then how often and what is its correct position. To search for
the word ’always’ one must first get its code from the WBTC frequency table and then implement Algorithm
2. The WBTC code of the word ’always’ is ’000001’, so we start searching from the root bitmap B0 of the final
WT. The first prefix pair of bits is ’00’, so we should move towards the left subtree of the final WT and reach
node B1. The next pair of bits is ’00’, so we next move towards the left subtree of bitmap B1 and reach node
B2. The next pair of bits is ’01’ that is the flag bit, so we search bitmap B2 for the number of occurrences
of the word ’always’. If the code ’01’ is not found in B2 then, we say the word ’always’ is not present in the
compressed content, but since it is found so we perform a rank operation at B2 to know the frequency of the
word ’always’ as Rank01(B2, |B2|) = 1, that implies the word ‘always’ appears only one time in the content T.

To give the exact position of the word ’always’ we perform the select operation and traverse the final WT
in reverse order. Since the frequency of occurrence of the word is 1, so there should be only one position where
the word ’always’ is to be found in T. The select operation is performed to give the exact position of the word
’always’. So, we calculate Select01(B2, 1) = 1. Now we move to the inverse direction towards its parent node
and again run the select operation with the outputs of the previous select operation such as Select00(B1, 1) =
3. Now again we move to the inverse direction towards its parent node and again run the select operation with
the outputs of the previous select operation such as Select00(B0, 3) = 5. Since B0 is the root node of the final
WT thus, we can correctly say that the query word ’always’ is found exactly at position 5 from the starting
position in the source content T.

4. Experimental Setup and Results. To do this experiment, the Intel(R) Xeon(R) CPU E3-1245-v3
with 12 Gigabytes of RAM has been selected and all our algorithms have been implemented and demonstrated
with Ubuntu 18.04 LTS. The programming language used is C++ with OpenMP, and the GCC compiler is used
to construct all the codes. The research is tested on a small, self-made word document and consequences are
compared with existing algorithms like Huffman word packing, WT, and WBTC as these algorithms have been
used for word-based compressed pattern matching. The steps for different sample words of different lengths have
been executed periodically, and we have followed the average time value of the algorithms to be represented in
the result. There are two algorithms for our solution, the first is for wavelet building, and the second algorithm
is sample word matching. Thus, both the build-time and the matching time are the cumulative time of the
methodology. With O(n log σ) time for work and an additional 4σ ⌈log n⌉ bits of space, the construction of
parallel WT is achieved in O(n) time. WBTC encoding takes O(n log2 n) if the source content includes n
number of words. It takes O(n) time to fulfil the word matching request using a WT. Therefore, our solution
takes the cumulative of O(n log2 n) time to design the index and matching sample query.

396 Shashank Srivastav, P. K. Singh, Divakar Yadav

Fig. 3.3: WT for Level 3.

Fig. 3.4: Final WT for the content T.

In our approach, some additional memory is required in parallel construction and in creating the final index
by merging all the smaller WTs into the final WT. The indexes created by our algorithm are more space-efficient
than the indexes created by previous existing algorithms. The main advantage of using a WT data structure
to create indexes is that its space complexity is much lower than other data structures such as B tree and B+

tree. The other advantage of WT is that each node stores a pair of bits, so this will minimize the overall height
of the WT compared to the Huffman tree for words. The rank and select operations of the WT always help to
avoid mismatches and advantageously, all these operations are completed in O(1) time. The build time is the
only disadvantage of a WT, so we try to reduce it by using a parallel construction approach. Our proposed
method matches the words better than other algorithms by comparing the processing time of the proposed
method with different prevalent compressed matching algorithms for words like Huffman Word-Coding (HC),
WBTC and WT. Table 4.1 and Fig 4.1display the processing time of all algorithms by varying the file size
with a fixed alphabet size. Fig 4.1 displays the processing time of HC, WBTC, WT, and WBTC_PWT with
a fixed alphabet length of 256. Furthermore, the processing time is also increasing as the file size increases as
displayed in Table 4.1.

From Table 4.1 we see, for all word patterns and the file size 512 KB, the HC algorithm runs for about 45.353
seconds, the WBTC algorithm runs for about 39.584 seconds, the WT algorithm runs for about 34.320 seconds,

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 397

Table 4.1: Processing time (in seconds) of algorithms (for fixed alphabet size = 256)

File size = 512KB File size = 1024KB File size = 2048KB

Words in

Pattern
HC WBTC WT

WBTC_P

WT
HC WBTC WT

WBTC_P

WT
HC WBTC WT

WBTC_P

WT

Single 1 23.965 22.546 21.089 12.876 46.947 44.763 41.984 31.380 93.531 90.735 82.967 69.386

Multiple

2 9.432 8.321 6.978 5.129 19.621 18.057 16.245 14.096 32.607 29.841 28.073 27.007
4 5.854 4.675 3.723 2.531 8.639 7.847 5.397 4.062 15.832 14.546 13.094 11.998
6 3.729 2.145 1.541 0.859 4.067 3.185 2.074 1.354 9.045 8.598 6.332 4.098
8 2.373 1.897 0.989 0.431 2.273 1.945 1.023 0.687 4.023 3.105 2.639 1.576

(a) (b)

(c)

Fig. 4.1: (a), (b) and (c) shows the processing time of algorithms (for fixed alphabet size of 256)

and our suggested WBTC_PWT algorithm runs for about 21.826 seconds. Thus, our proposed algorithm shows
an average increase of up to 51%, 44% and 36% relative to the HC algorithm, the WBTC algorithm and the WT
algorithm, respectively. According to our estimates, the average improvement of our proposed WBTC_PWT
algorithm over HC algorithm, WBTC algorithm and WT algorithm is 36%, 31% and 22% respectively for file
size 1024Kb and 26%, 22% and 16% respectively for file size 2048Kb. Fig 4.1 also demonstrate that processing
time decreases as the number of words in pattern increases as shown in Table 4.1.

Table 4.2 and Fig 4.2 shows algorithm processing time while alphabet length varies, and file size is constant
as 1024KB. Table 4.2 display that the algorithms processing time is decreasing as the alphabet size increases.

398 Shashank Srivastav, P. K. Singh, Divakar Yadav

Table 4.2: Processing time (in seconds) of algorithms (for fixed file size = 1024KB)

Alphabet size = 64 Alphabet size = 128 Alphabet size = 256

Words in

Pattern

HC WBTC WT
WBTC_P

WT
HC WBTC WT

WBTC_P

WT
HC WBTC WT

WBTC_P

WT

Single 39.280 37.084 36.932 35.371 42.042 40.993 39.897 35.902 46.140 44.823 41.871 32.984

Multiple

2 18.635 17.035 14.581 14.005 20.048 17.941 15.261 14.523 19.729 18.173 16.187 14.106
4 9.734 8.047 5.932 4.842 9.642 8.903 6.186 4.943 8.833 7.683 5.431 4.007
6 4.981 4.002 2.094 0.989 5.258 4.174 2.068 1.238 4.168 3.186 2.109 1.399
8 1.994 1.179 0.928 0.599 2.043 1.278 1.048 0.641 2.275 1.890 1.098 0.698

(a) (b)

(c)

Fig. 4.2: (a), (b) and (c) shows the processing time of algorithms (for fix file-size of 1024KB)

From Table 4.2 we see, for all word patterns and the alphabet size of 64, the HC algorithm runs for about 74.624
seconds, the WBTC algorithm runs for about 67.347 seconds, the WT algorithm runs for about 60.467 seconds,
and our suggested WBTC_PWT algorithm runs for about 55.806 seconds. Thus, our proposed algorithm shows
an average increase of up to 25%, 17% and 7% relative to the HC algorithm, the WBTC algorithm and the WT
algorithm, respectively. According to our estimates, the average improvement of our proposed WBTC_PWT
algorithm over HC algorithm, WBTC algorithm and WT algorithm is 27%, 21% and 12% respectively for the
alphabet size 128 and 34%, 29% and 20% respectively for the alphabet size 256. Fig 4.2 demonstrate that

A Method to Improve Exact Matching Results in Compressed Text using Parallel Wavelet Tree 399

Table 4.3: Compression-Ratio of the Approaches

S.No. Approaches Compression Ratio

1. HC 37.93

2. WBTC 40.06

3. WT 32.48

4. WBTC_PWT 30.29

runtime increases as the size of the alphabet increases. The results show differences in processing time when
we process a single pattern and multiple patterns in both cases. The proposed approach outperforms the other
existing algorithms.

4.1. Compression Ratio. In our proposed approach WBTC_PWT, we need to store the packaged file
as well as the word frequency table. This word frequency table is used to store all the unique words in the
corpus along with their corresponding WBTC codes. For a large text file, the word frequency table size is also
large which can directly impact the compression ratio. As stated by the heap rule [33], a text file of size ’w’
in words will have the word frequency table size s = O(wη) for 0.3 < η < 0.8. Therefore, for a large text
file, storing the word frequency table must take the minimum size in memory. For the file size of 1024KB and
alphabet size of 256, Table 4.3 shows the compression ratio of the approaches discussed here and clearly shows
that on average WBTC_PWT takes a lower space than the other approaches.

5. Conclusion and Future work. This paper presents a method WBTC_PWT, for exact text matching
in a compressed text corpus. We also tried to minimize the size of the data by performing data packing, so less
memory is needed in the processing of data. This paper presents an improvement in matching time compared
to other algorithms. As we know, whenever the size of the indexes is larger than the size of the main memory
and a search request arrives for any query, these indexes must be loaded into the main memory. Since the size
of the indexes is larger than the size of the main memory, it will cause a high number of page faults and thus
affect the overall system throughput. We used the WBTC packing technique to minimize the size of the data
at the initial stage and then create the indexes of the data with the help of the WT. The main advantage of
creating indexes using a WT is that it takes up less memory than other indexing methods and it is free from
getting a false match. The main drawback of the WT is its construction time. So, to minimize the construction
time of the WT, we used parallel processing using the computer’s multi-core architecture. Furthermore, we
minimize the matching and search time by matching the query text directly to the compressed text content,
without the need for decompression. This approach improves the overall throughput of the system.

In the future, we will attempt to create a WT using machine learning, by using our algorithm with various
size of text datasets. We can also use computer classification models to find and measure the frequency of
specific terms to allocate WBTC codes to all words. Using machine learning we can reduce the additional
memory needs in constructing WT in the WBTC_PWT algorithm.

REFERENCES

[1] Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: Pattern matching in z-compressed files. Journal
of Computer and System Sciences, 52(2):299–307, 1996.

[2] Richard Beal and Donald Adjeroh. Compressed parameterized pattern matching. Theoretical Computer Science, 609:129–
142, 2016.

[3] Robert S Boyer and J Strother Moore. A fast string searching algorithm. Communications of the ACM, 20(10):762–772,
1977.

[4] Nieves R Brisaboa, Yolanda Cillero, Antonio Farina, Susana Ladra, and Oscar Pedreira. A new approach for
document indexing usingwavelet trees. In 18th International Workshop on Database and Expert Systems Applications
(DEXA 2007), pages 69–73. IEEE, 2007.

[5] Nieves R Brisaboa, Antonio Farina, Susana Ladra, and Gonzalo Navarro. Implicit indexing of natural language text
by reorganizing bytecodes. Information Retrieval, 15(6):527–557, 2012.

[6] Francisco Claude and Gonzalo Navarro. Practical rank/select queries over arbitrary sequences. In International Sym-
posium on String Processing and Information Retrieval, pages 176–187. Springer, 2008.

400 Shashank Srivastav, P. K. Singh, Divakar Yadav

[7] Edleno Silva De Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates. Direct pattern matching on
compressed text. In Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.
98EX207), pages 90–95. IEEE, 1998.

[8] Edleno Silva De Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates. Fast searching on compressed
text allowing errors. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development
in information retrieval, pages 298–306, 1998.

[9] Martin Farach and Mikkel Thorup. String matching in lempel—ziv compressed strings. Algorithmica, 20(4):388–404,
1998.

[10] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed representations of sequences
and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2):20–es, 2007.

[11] Johannes Fischer, Florian Kurpicz, and Marvin Löbel. Simple, fast and lightweight parallel wavelet tree construction.
In 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 9–20.
SIAM, 2018.

[12] Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching. Information Processing Letters,
100(3):91–96, 2006.

[13] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. Efficient wavelet tree construction and querying
for multicore architectures. In International Symposium on Experimental Algorithms, pages 150–161. Springer, 2014.

[14] Lars Gleim and Stefan Decker. Open challenges for the management and preservation of evolving data on the web.
MEPDaW@ ISWC, 2020.

[15] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes. 2003.
[16] A Gupta and S Agarwal. A scheme that facilitates searching and partial decompression of textual documents. Int. J. Adv.

Comput. Eng, 1(2), 2008.
[17] Ashutosh Gupta and Suneeta Agarwal. A fast dynamic compression scheme for natural language texts. Computers &

Mathematics with Applications, 60(12):3139–3151, 2010.
[18] Rahul Gupta, Ashutosh Gupta, and Suneeta Agarwal. A novel approach of data compression for dynamic data. In

2008 IEEE International Conference on System of Systems Engineering, pages 1–6. IEEE, 2008.
[19] David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–1101,

1952.
[20] Radhika Khetan, Suneeta Agarwal, and Rajesh Prasad. An efficient approach towards compressed parameterized word

matching using wavelet tree. Journal of Information and Optimization Sciences, 37(2):285–301, 2016.
[21] Shmuel T Klein and Dana Shapira. Compressed matching in dictionaries. Algorithms, 4(1):61–74, 2011.
[22] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in strings. SIAM journal on

computing, 6(2):323–350, 1977.
[23] Julian Labeit, Julian Shun, and Guy E Blelloch. Parallel lightweight wavelet tree, suffix array and fm-index construction.

Journal of Discrete Algorithms, 43:2–17, 2017.
[24] Yury Lifshits. Processing compressed texts: A tractability border. In Annual Symposium on Combinatorial Pattern

Matching, pages 228–240. Springer, 2007.
[25] Christos Makris. Wavelet trees: A survey. Computer Science and Information Systems, 9(2):585–625, 2012.
[26] Surya Prakash Mishra, Rajesh Prasad, and Gurmit Singh. Fast pattern matching in compressed text using wavelet tree.

IETE Journal of Research, 64(1):87–99, 2018.
[27] Surya Prakash Mishra, Col Gurmit Singh, and Rajesh Prasad. A review on compressed pattern matching. Perspectives

in Science, 8:727–729, 2016.
[28] Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
[29] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing Surveys (CSUR), 39(1):2–es, 2007.
[30] Julian Shun. Parallel wavelet tree construction. In 2015 Data Compression Conference, pages 63–72. IEEE, 2015.
[31] Julian Shun. Improved parallel construction of wavelet trees and rank/select structures. Information and Computation,

273:104516, 2020.
[32] Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates. Fast and flexible word searching

on compressed text. ACM Transactions on Information Systems (TOIS), 18(2):113–139, 2000.
[33] Dick C van Leijenhorst and Th P Van der Weide. A formal derivation of heaps’ law. Information Sciences, 170(2-4):263–

272, 2005.
[34] Arun Kumar Yadav, Divakar Yadav, and Rajesh Prasad. Efficient textual web retrieval using wavelet tree. International

Journal of Information Retrieval Research (IJIRR), 6(4):16–29, 2016.
[35] Divakar Yadav, Apeksha Singh, and Vinita Jain. Search results optimization. In International Conference on Contem-

porary Computing, pages 325–334. Springer, 2011.
[36] Nivio Ziviani, E Silva De Moura, Gonzalo Navarro, and Ricardo Baeza-Yates. Compression: A key for next-generation

text retrieval systems. Computer, 33(11):37–44, 2000.

Edited by: Dana Petcu
Received: Apr 26, 2021
Accepted: Nov 16, 2021

