
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2023 SCPE. Volume 24, Issues 3, pp. 521–530, DOI 10.12694/scpe.v24i3.2163

COMPUTER MALICIOUS CODE SIGNAL DETECTION BASED ON BIG DATA
TECHNOLOGY

XIAOTENG LIU∗

Abstract. The article addresses the challenges modelled by the inadequacy of traditional detection methods in effectively
handling the substantial volume of software behavior samples, particularly in big data. A novel approach is proposed for leveraging
big data technology to detect malicious computer code signals. Additionally, it seeks to attack the issues associated with machine
learning-based mobile malware detection, namely the presence of a large number of features, low accuracy in detection, and
imbalanced data distribution. To resolve these challenges, this paper presents a multifaceted methodology. First, it introduces a
feature selection technique based on mean and variance analysis to eliminate irrelevant features hindering classification accuracy.
Next, a comprehensive classification method is implemented, utilizing various feature extraction techniques such as principal
component analysis (PCA), Kaehunen-Loeve transform (KLT), and independent component analysis (ICA). These techniques
collectively contribute to enhancing the Precision of the detection process. Recognizing the issue of unbalanced data distribution
among software samples, the study proposes a multi-level classification integration model grounded in decision trees. In response,
the research focuses on enhancing accuracy and mitigating the impact of data imbalance through a combination of feature selection,
extraction techniques, and a multi-level classification model. The empirical results highlight the effectiveness of the proposed
methodologies, showcasing notable accuracy improvements ranging from 3.36% to 6.41% across different detection methods on
the Android platform. The introduced malware detection technology, grounded in source code analysis, demonstrates a promising
capacity to identify Android malware effectively.

Key words: Android malware detection, Feature extraction, Set classification algorithm, PCA, Kaehunen-Loeve transform
(KLT), Independent component analysis (ICA)

1. Introduction. With the advent of the first Von Neumann computer and the 20th-century rise of the
Internet to today’s interconnected society, computers’ significance in social life has steadily escalated. Con-
currently, as computers have progressed, an unceasing influx of network security incidents has arisen. Such
incidents can result in material losses for individuals and organizations and grave consequences, including per-
sonal privacy breaches and data leaks. According to the security report spanning August 2021 to January 2022
by the National Internet Emergency Response Center, a statistical chart depicting security events becomes ev-
ident. Over this half-year period, malicious program events constituted nearly a third of China’s total security
incidents, consistently ranking among the top two alongside vulnerability events in network security [5]. In
contemporary society, the Internet bears substantial social and economic value. Yet, specific unlawful accesses
enable illegal actors to hijack computers, private data, etc., yielding economic or political gains. A case in point
is the WannaCry ransomware, which encrypts and extorts data from hospitals, banks, and other institutions,
and the Stuxnet worm, which increased in Iran to target critical energy facilities. The former encrypts the
victim host computer data and forces users into paying for data decryption. At the same time, the latter
disrupts uranium plant centrifuges through a computer virus, indirectly impacting Iran’s nuclear program to
achieve political objectives [2].

Traditional malware detection approaches centered around feature matching and heuristic scanning fall
short in adapting to the dynamic evolution of malware. Modern malicious software frequently employs tactics
like shell techniques and encryption to elude conventional detection methods, necessitating more advanced tech-
nologies for effective detection. The robust capacity of machine learning to discern latent correlations between
features has prompted an increasing number of experts to integrate machine learning techniques into malware
identification. The malware detection approach rooted in machine learning capitalizes on conventional static
and dynamic detection mechanisms to extract malware attributes. These attributes are subsequently translated

∗Xinxiang vocational and technical college, Xinxiang Henan, 453000, China (XiaotengLiu5@163.com).

521

522 Xiaoteng Liu

into formats like images and text, allowing for identification through classical machine learning classification al-
gorithms, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and other methodologies,
yielding commendable outcomes. Recent years have witnessed notable strides in entity relationship extraction,
primarily due to the advancement of graph convolutional networks (GCNs). Scholars have embarked on incor-
porating graph neural networks into pertinent domains, notably including the domain of malware detection.
Notably, control flow graphs (CFGs) and function call graphs (FCGs) of binary files have emerged as pivotal
starting points in this research direction within the malware detection field [10, 11].

The paper is structured into five main sections. Section 1 introduces the study’s focus on computer
malicious code signal detection using big data technology. Section 2 presents a comprehensive literature review
to contextualize the research. In Section 3, the proposed method for detection is detailed. Section 4 encompasses
the presentation and discussion of the results obtained. Finally, Section 5 provides the concluding remarks
summarizing the findings and contributions of the study.

2. Literature Review. A load decomposition system is introduced that efficiently connects high-frequency
data from battery-powered particles equipped with current sensors, complementing the infrastructure’s low-
frequency data acquired from energy meters [12]. Machine learning techniques are employed to classify exe-
cutable files, including a k-nearest neighbor, support vector machine (SVM), and decision tree methods. The
effectiveness of this approach was measured against dynamic detection methods that utilize dynamic system
call sequences. Empirical findings indicate that this approach demonstrates enhanced detection accuracy and
a reduced false positive rate compared to dynamic detection methods [3]. A malware detection approach is
discussed in risk theory, incorporating feature extraction and synthesis. Using the n-gram algorithm, features
are extracted from API call sequences during malware runtime and consolidated into risk and security sig-
nals. Ultimately, the deterministic dendritic cell algorithm is employed for malware detection. Experimental
results highlight that, in contrast to four other detection algorithms, the proposed method displays a lower
false positive rate and false negative rate [7].

Since Kaspersky discovered SMS Trojans in August 2010, Android malware has evolved rapidly. Delving
into Android malware reveals that the latest malware families exhibit diverse malicious behaviors, encompassing
encrypted payloads, code obfuscation, concealed commands, and manipulation of communication channels. As
cutting-edge technologies advance and the black market’s allure grows, the design of Android malware has
become increasingly intricate and ingenious. To safeguard user information, a surge of technologies and research
efforts are being channeled into malware prevention and detection [14].

Regarding feature extraction methods, two primary approaches prevail: static analysis and dynamic analy-
sis. The dynamic detection approach involves executing Android software within controlled environments like
virtual machines or sandboxes, observing software behavior and entire execution processes to discern potential
malicious activities. This approach is capable of identifying anomalies in zero-day vulnerabilities. However, it
might fail to induce malicious behavior in spyware adept at evasion. Additionally, dynamic detection necessi-
tates substantial hardware resources, system allocations, and extended detection cycles.

Conversely, static detection for Android malware typically entails scrutinizing software source code or
decompiled executable files to extract features and achieve malware detection without code execution. Static
detection is a software analysis technique that uncovers defects or vulnerabilities by analyzing source code or
executable files. In contrast to dynamic detection, static detection doesn’t demand code execution, allowing it to
identify potential issues and rendering it more practical rapidly. This method is widely adopted by researchers
in the Android malware detection domain due to its speed, efficiency, and minimal resource requirements [15].

Many specialized big data-driven techniques for detecting malware are designed explicitly for mobile soft-
ware operations. This encompasses a comprehensive exploration of Dalvik, API, and permission-based profil-
ing of malware targeting Android systems. The investigation explores deeply into feature selection, covering
frequency-averaged and variance-based algorithms. Moreover, the study extensively explores feature extraction
methods, including PCA, KLT, and ICA. The research also examines a decision tree-powered multi-level clas-
sification fusion algorithm strategically devised to rapidly and accurately identify instances of mobile malware
within the Android platform [18].

3. Proposed Methodology. Mobile malware detection systems rely on specialized selection algorithms
rooted in mean and variance analysis, content extraction-driven malware detection algorithms, and multi-

Computer Malicious Code Signal Detection based on Big Data Technology 523

level mixture-based malware detection algorithms. A mobile malware detection system serves the purpose
of identifying malicious software on mobile devices. Given the escalating integration of mobile devices into
everyday activities and the escalating risk posed by malicious software, developing such a detection system
holds immense importance [9, 13]. The function of each component within the system is delineated as follows.

1) Feature extraction: It extracts the Permission feature, API feature and Dalvik feature from the collected
samples.

2) Set learning: multi-level integration is adopted for classification and fusion [22, 17].

3.1. Mean-Variance-based feature selection algorithm. The Dalvik directive is in the Android soft-
ware’s runtime on the Dalvik virtual machine, offering information that lies deeper within the system than the
API. It presents the Android software’s implementation through its registry, offering the benefits of reduced
instructions and simplified withdrawal, rendering it adept for effective malware detection. This section explores
the efficacy of Dalvik’s specialized instructions for detecting malware. During the compilation of an Android
app, Java bytecode is automatically transformed into instructions tailored for the Dalvik VM, stored within the
class dex. This classes.dex file is intrinsic to every Android application and is executable directly on the Dalvik
VM. During runtime, the Dalvik VM accesses register operands using Dalvik instructions, encompassing null
operation (nop), data operation (move), return, data definition (const), method call (invoke), data conversion,
and data operation instructions. This paper’s approach relies on representing the relative frequency of Dalvik
instructions and employs a feature selection algorithm [1].

Disparities in the relative frequencies of Dalvik instructions hold significant implications for software vul-
nerability assessment. The mean relative frequency of specific Dalvik instructions within malware surpasses the
normal software, indicating that malware frequently invokes specific Dalvik instructions more often than regular
software. Moreover, the instruction divergence among certain malware instances surpasses that within standard
software, underscoring distinct calling patterns for Dalvik instructions among different malware strains. This
paper introduces Dalvik message features, involving averaging and numeric system selection.

The extent of divergence between malware and normal software regarding the relative frequency of invoking
Dalvik instructions correlates with enhanced performance. Simultaneously, improved proximity between sample
points of the same category signifies better relative frequency within samples of the same classification, alongside
greater separation between sample points of disparate categories. The paper incorporates a linear discriminant
analysis (LDA) formula to assess the classification potency of diverse Dalvik instructions, as illustrated in
Equation (3.1).

J(A) =
|µb − µm|

2

S2

b + S2
m

(3.1)

where µb and µm represents the average value of the relative frequency of standard software and malicious
software, respectively; Sb and Sm represents the variance of standard and malicious software’s relative frequency.
It can be seen from Equation (3.1) that the goal of feature selection is to maximize the J(A) value, that is,
to minimize the sum of variances between the two types of samples and to maximize the difference between
the average values of the two types of samples. We calculate the J(A) value for each Dalvik instruction. The
larger J(A) value is, the stronger the classification ability of feature A, and sort the features in descending
order according to the size of the J(A) value. Finally, the first k Dalvik instruction features is selected as a
practical feature subset [21, 6].

3.2. Feature extraction-based malware detection algorithm. The malware detection algorithm cen-
tered around feature extraction employs machine learning and other techniques to identify malware through
feature analysis. The fundamental concept involves initially extracting various attributes from malicious soft-
ware, such as API call sequences, permission utilization, and code structure. Subsequently, these features
are fed into a classifier for training, yielding a model capable of recognizing malicious software. Eventually,
this model is utilized to categorize unfamiliar software. A content extraction algorithm highlights distinctions
in features across diverse locations to enhance detection accuracy. Figure 3.1 illustrates the proposed novel
malware detection strategy based on feature extraction.

Initially, the extraction of Dalvik instructions from the code is performed. Subsequently, employing fun-
damental analysis, KLT, and ICA, the original Dalvik instructions are mapped to corresponding positions,

524 Xiaoteng Liu

Feature extractionDalvik instruction

Set learning module
Dalvik instruction

Decision moduleAndroid APP

acquisition module

eigenmatrix module

Fig. 3.1: Flow diagram of malware detection system based on feature extraction

generating three novel instructions. Lastly, a single-layer neural network is trained using a rapid machine
learning algorithm as the foundational classifier. The stacking process then integrates the overall distribution
base [4].

The three distinct feature extraction algorithms used to map features into distinct feature spaces are as
follows:

(1) PCA: It is a linear projection technique that maps high to low dimensional features, and it is a widely
used data reduction technology. Its purpose is to extract the most essential features from high-dimensional data
and convert them into vectors in low-dimensional space to realize data visualization and simplify analysis. In
the process of projection, the variance of data is the largest. Define N samples, X = [X1, X2, · · · , XN] where;

Xi = [Xi,1, Xi,2, · · · , Xi,d]
T
∈ Rd; d is the number of features. The principal component analysis transforms

linearly into a new sample, as follows in Equation (3.2):

yi = UTXi (3.2)

where U is an orthogonal matrix. PCA initially computes the sample’s covariance matrix. Subsequently, it
determines the eigenvectors of this covariance matrix and transforms the original features.

(2) Kaehunen-Loeve transform: In PCA, the transformation matrix is the covariance matrix of the sample.
In the Kaehunen-Loexe transformation, the transformation matrix is the inter-class dispersion matrix, which
is recorded as Sw given in Equation (3.3):

Sw =

L
∑

i=1

PiE
[

(X − m̄i) (X − m̄i)
T

]

(3.3)

where L is the sample category; Pi is the probability of category i; E stands for mathematical expectation; mi

is the mean of category i. Calculate the eigenvector of Sw, and then calculate the new feature according to
formula (3.2).

(3) Independent component analysis: The independent information is extracted from original features. The
independent component analysis model is recorded using Equation (3.4):

X = As (3.4)

where X is the original data; A is a full rank matrix, S is an independent component. The purpose of
independent component analysis is to extract independent component S from X is represented in Equation
(3.5):

ŝ = UX (3.5)

where ŝ represents the estimated value of the independent component; U is the transformation matrix and fast
ICA algorithm is used to calculate U .

Computer Malicious Code Signal Detection based on Big Data Technology 525

3.2.1. Set classifier based on extreme learning machine. Utilizing the extreme learning machine
(ELM) algorithm, the single-layer neural network is employed as a foundational classifier. The Stacking tech-
nique is then employed to construct a set classifier. Noteworthy advantages of the ELM ensemble classifier
encompass:

1. Swift Training Pace: The ELM algorithm’s training process entails solving a linear equation system
and does not require iterative optimization. Consequently, it achieves rapid training, proving especially
suited for extensive datasets.

2. Elevated Classification Precision: The ELM algorithm boasts robust generalization capabilities and
is adept at addressing intricate scenarios like high dimensionality, nonlinearity, and noise interference,
resulting in high classification accuracy.

3. Robust Scalability: The ELM algorithm integrates with other machine learning methods, such as SVM
and random forests. Its applicability extends to multi-sample, multi-feature, and multi-modal datasets.

The swift learning machine algorithm randomly assigns initial input weight vectors and biases to the neural
network. Subsequently, the neural network’s output weights are determined through analysis. The algorithmic
sequence is as follows:

In the training stage, input weights and deviations are randomly assigned to calculate the output of hidden
layer nodes, as shown in the following formula (3.6):

hij = g (wjxi + bj) i = 1, 2, · · · , N ; j = 1, 2, · · · , k(6) (3.6)

where hij is the output of the j hidden layer node; wj = [wj1, wj2, · · · , wjn]
T

is the weight value connecting
the j-th hidden node and the input data; bj is the node deviation of the j-th hidden layer; N is the number of
samples; k is the number of hidden layer nodes; g is the activation function. The output matrix of the hidden
layer is marked as H = {hij}, and the weight vector connecting the hidden layer and the output layer nodes is
marked as β, as follows (3.7):

β̂ = H†T (3.7)

where β̂ is the estimated value of β;H† is the generalized inverse matrix of H ’s Moore-Penrose; T is the
classification label as given by Equation (3.8). In the test phase, for unknown samples, the hidden layer node
output H is calculated first, and then its label is predicted.

T = β̂H (3.8)

where T is the prediction label of unknown samples; H is the hidden layer output of unknown samples, calculated
according to Equation (3.6). This paper uses the Stacking method to build a set classifier and stacking fuses of
each base classifier based on the learning method, including two layers marked as level-0 and level-1. In level-0,
an extreme learning machine builds N basis classifiers. In level-1, the tags predicted in level-0 are used as input
data, and the speed learning machine is also used for training [16].

3.3. Multi-level integration-based algorithm for mobile malware detection. Android software
permissions and API functions are pivotal in multi-level integrated mobile malware detection. An in-depth
analysis uncovers distinctions in the frequency of usage of permitted functions and API functions between
normal software and malware. Hence, this article selects and compares the top 20 permissions and APIs,
with the outcomes presented in Figures 3.2 and 3.3. In practical scenarios, the quantity of genuine software far
exceeds that of malicious software, creating an inequality in data distribution. Generally, approaches addressing
uncertain data involve resampling, large-sample size reduction, SVM, and Random Forest. Primarily, the focus
centers on detecting malware, endeavoring to minimize instances of malware being wrongly identified as normal
software. This involves diminishing false positives. Consequently, the prevailing approach involves customizing
diverse training and combination methodologies to cater to distinct models [19].

It can be seen from Figure 3.2, the normal software and malicious software have a high frequency of
applying for permissions, such as WRITE_EXTENRNAL_STORAGE and ACCESS_NETWORK_STATE,
but the difference between them is small; However, the frequency of malicious software applications for

526 Xiaoteng Liu

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0
normal

fake

p
e
r
c
e
n
t

Permission call frequency difference comparison

Fig. 3.2: Comparing the disparity in call frequency between normal and malicious software

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0
normal

fake

p
e
r
c
e
n
t

APl call frequency difference

Fig. 3.3: Contrasting API call frequencies in normal and malicious software

READ_CONTACTS, SEND_SMS and other permissions is much higher than that of normal software appli-
cations. Therefore, permission is effective as a feature to distinguish normal software from malicious software.

The observation from Figure 3.3 indicates that both normal and malicious software frequently raise APIs
like Android.content.Content and android.app.Activity. Despite this, the disparity between their usage fre-
quencies remains minimal. In contrast, malware exhibits a higher frequency of invoking APIs such as an-
droid.graphics.Paint and android.View.KeyEvent compared to the frequency seen in normal software [8].

To address the issues as mentioned earlier and enhance detection accuracy, we present a novel approach
known as decision tree ensembles-based detection (DTED) method. This integration technique involves a
three-tier ensemble of decision trees. Among the decision tree-based integrated learning methods, the random
forest algorithm is renowned. Initially, the random forest algorithm extracts a specific portion of samples and
features randomly from the original data, constructing multiple decision trees, each trained on distinct sample
and feature sets. During classification, test samples are input into each decision tree for classification, with the
outcomes from each decision tree being collectively voted upon or subjected to weighted averaging to derive
the ultimate classification result. In regression scenarios, the prediction outcomes of individual decision trees
are amalgamated using an averaging approach. The framework for mobile malware detection is proposed using

Computer Malicious Code Signal Detection based on Big Data Technology 527

Table 4.1: Composition of datasets

Dataset Malware Regular software Total

D1 29102 29120 58222
D2 1262 1262 2524

the following three components:

(1) The initial set of combinations employs the complete voting approach, ensuring an equitable distribution
across all decision trees. This balance mitigates ambiguous information and addresses the issue at
hand.

(2) The subsequent stage of amalgamation employs a majority voting model. For models not identified in the
first stage, they are combined with the majority vote of the first-stage decision trees. This integration
occurs alongside the processing of different effective models from the second stage. This technology
effectively reduces malware false alarms.

(3) The third layer of integration leverages a select few votes. Typically, following the two preceding detection
layers, the remaining undetected samples tend to be more resilient. In such cases, where robust feature
characterization is lacking, incorporating a few experienced votes can enhance accuracy to a certain
extent.

Compared with classical data mining algorithms, DTED effectively addresses unbalanced data, offers high
accuracy, and maintains a low false alarm rate. This success stems from the fact that the first-level integration
method can effectively detect most positive samples, resulting in a balanced proportion of positive and negative
samples, thus tackling the imbalance challenge. The second-level integration, combined with the first-level
integration, bolsters the weight of negative samples, enhancing their detection rate and thereby diminishing
the false alarm rate of negative samples. The third integration layer fortifies the outcomes from the second
tier, heightening the overall detection accuracy. In summary, the DTED method excels in handling imbalanced
data, and delivering high accuracy.

4. Results and Discussion.

4.1. Data sets and evaluation indicators. The D1 dataset encompasses models from Google Play,
Peapod, and Android Online, totaling 29,102 models. On the other hand, the malware samples originate from
the Android Malware Genome Project and Andro MalShare, amounting to a total of 29,120 samples. Malware
samples for the D2 installation file dataset are sourced from the Android Malware Genome Project, while the
source software exclusively comes from Google Play. Notably, dataset D1 is utilized for testing the feature
selection algorithm, whereas dataset D2 serves as the testing ground for the feature extraction algorithm, as
illustrated in Table 4.1.

Numerous classification systems exhibit distinct characteristics, with diverse attributes across different
methods classes and performance outcomes varying based on data types. The realm of classification algorithms
encompasses an array, including decision trees, naive Bayes, SVM, logistic regression, random forest, neural
networks, and more. Each algorithm possesses unique merits, drawbacks, and suitable contexts, with algorithm
selection contingent upon specific circumstances. The choice of classification hinges on the task’s nature, the
methodology for classification selection, and the approach to evaluating algorithm efficacy. Generally, Precision
and F-measure stand as chosen measurement parameters. To begin, we will introduce various evaluation models.
For now, let’s consider our target categories as positive and negative groups [20].

1. True positive (TP): The number of events that are positive events, divided by classification into good
conditions;

2. False positive (FP): the number of cases misclassified by positive cases, i.e. divided by the number of
cases classified as negative but in the excellent condition;

3. False negative (FN): the number of cases classified as negative, i.e., the number of cases that were good
but classified as negative by category;

528 Xiaoteng Liu

Table 4.2: Classification accuracy of different feature selection algorithms

Classifier
Accuracy (%)

No feature
selection

Sequential
Forward
Selection

Mountain
climbing

algorithm

Relief
algorithm

Proposed Feature
Selection based

on Mean
and Variance

Logistic regression 81.57 63.57 78.81 82.43 82.70

C4.5 Decision tree 87.04 77.75 86.95 87.53 87.61

Random forest 83.98 79.81 82.26 90.39 90.56

Table 4.3: Comparative performance of classifiers based on accuracy (%) and F-measure (%)

Classifier Accuracy (%) F-measure (%)

ELM 93.56 93.43
ELM+PCA 92.10 93.81
ELM+KLT 93.78 90.73
ELM+ICA 93.55 92.95
Stacking 95.12 93.58

Proposed FES 97.52 97.52

4. True negative (TN): The number of events correctly classified as negative events, that is, the number
of negative events divided by negative events by category. The classification criteria are as follows.
(a) Precision: Precision is a measure of accuracy, which represents the proportion of positive cases in

the cases divided into positive cases, “Precision”=TP/(TP+FP);
(b) Recall rate: recall rate is the degree of coverage, “Recall”=TP/(TP+FN);
(c) F-measure: F-measure is the average harmonic number of recall and precision is expressed as

Equation (4.1):

F-measure =
2× Recall × Precision

Recall + Precision
(4.1)

4.2. Performance comparison of various classifiers. To evaluate the proposed FSMV classification
system, this study employs regression logic, C4.5 decision trees, and random forest as classifiers, comparing them
with subsequent selection algorithms (SFS), hill climbing, and Relief algorithms. Therefore, the classification
outcomes using D1 data are presented in Table 4.2. The data in Table 4.2 demonstrates the enhancement in the
detection capabilities of various classification systems facilitated by the specialized selection algorithm based
on the mean and variance (FSMV) of Dalvik instructions. The combination of FSMV with random forest for
detecting Dalvik definitions showcases a 6.41-fold improvement over the sole use of the random forest algorithm.
This improvement lies below the Relief algorithm’s performance and surpasses that of the C4.5 decision tree
when identifying regression logic connections accurately.

To test the malware system based on the extracted content, this paper uses the D2 dataset, randomly
selecting 80 files as training data and 20 files as testing data. The corresponding results are shown in Table
4.3. The table shows that the F-value of ELMPCA is higher than that of the ELM algorithm alone, and the
F-value of ELMKLT and ELMICA is lower than that of ELM alone; The accuracy and F-rate of using only
Stacking is higher than that of using ELM only, and the content extraction-based Stacking method is higher
than other methods, indicating that it performs well.

To evaluate the malware detection method based on multi-level integration, this study employs dataset
D1, randomly selecting 80% of the data for training and 20% for testing. Typically, in imbalanced data, low

Computer Malicious Code Signal Detection based on Big Data Technology 529

Fig. 4.1: Comparison of classification accuracy and F-measure for different classifiers and feature extraction
techniques

Table 4.4: Classification accuracy and F-measure value of different algorithms

Detection algorithms Accuracy (%) F-measure (%)

J48 decision tree 87.37 88.24
SVM 88.13 87.20

Random forest 89.87 89.15
Proposed DTED 91.60 91.13

omission rate, and accuracy requirements, the F-measure value is widely employed as the evaluation metric.
The results are displayed in Table 4.4.

The provided table presents the outcomes of classification accuracy and F-measure achieved through diverse
classifiers and feature extraction techniques. The ELM classifier achieves an accuracy of 93.56% and an F-
measure of 93.43%. When coupled with different feature extraction methods, ELM yields variable outcomes.
“ELM+PCA” demonstrates an accuracy of 92.10% and an F-measure of 93.81%, “ELM+KLT” achieves an
accuracy of 93.78% but a comparatively lower F-measure of 90.73%, and “ELM+ICA” results in an accuracy
of 93.55% and an F-measure of 92.95%.

Remarkably, the “Stacking” technique achieves an accuracy of 95.12% and an F-measure of 93.58%. Nev-
ertheless, it’s the feature extraction system (FES) that boasts the highest accuracy at 97.52%, coupled with
an impressive F-measure of 97.52%. These outcomes underscore the effectiveness of distinct classifiers and
their combinations with varied feature extraction techniques in terms of accuracy and F-measure for malware
detection. Among these, the “Proposed FES” strategy emerges as the most accurate classifier in this particular
context.

The table shows that the proposed DTED method surpasses commonly utilized solutions for addressing
imbalanced data, such as SVM and random forest. Notably, the DTED method exhibits higher accuracy and
F-measure values than alternative approaches. This outcome highlights that the DTED method excels in
handling uneven data and meeting the demands for low omission rates and high accuracy. Thus, the DTED
method showcases a strong and effective detection performance.

5. Conclusion. The rapid expansion of the mobile Internet has facilitated the explosion of mobile mal-
ware, mainly targeting the Android platform due to its open nature. Consequently, evaluating the security of
applications released on the internet and app stores and discriminating malicious software remains a pressing
research concern. This study critically examines the current challenges of mobile terminal malware detection
technology. It introduces a novel approach by scrutinizing software attributes from a source code perspective
while investigating pivotal facets of Android malware detection, encompassing Dalvik instructions, permis-
sions, and APIs. Essential techniques such as feature selection and extraction algorithms, alongside multi-level

530 Xiaoteng Liu

integrated classification methods, were meticulously explored. Empirical findings validate the proposed source-
based malware detection technology, confirming its efficiency in accurately identifying Android malware. This
research contributes substantially to the ongoing discourse by presenting a multi-layered solution that addresses
the growing threat of mobile malware. Connecting source-based detection and comprehensive methodologies
offers a robust safeguard for the Android platform’s security and integrity in the evolving mobile Internet.

REFERENCES

[1] M. M. Alani and A. I. Awad, Paired: An explainable lightweight android malware detection system, IEEE Access, 10 (2022),
pp. 73214–73228.

[2] S. M. Bellovin, S. Landau, and H. S. Lin, Limiting the undesired impact of cyber weapons: technical requirements and
policy implications, Journal of Cybersecurity, 3 (2017), pp. 59–68.

[3] Y. Ding, X. Yuan, D. Zhou, L. Dong, and Z. An, Feature representation and selection in malicious code detection methods
based on static system calls, Computers & Security, 30 (2011), pp. 514–524.

[4] E.-S. M. El-Kenawy, S. Mirjalili, F. Alassery, Y.-D. Zhang, M. M. Eid, S. Y. El-Mashad, B. A. Aloyaydi, A. Ibrahim,
and A. A. Abdelhamid, Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering
problems, IEEE Access, 10 (2022), pp. 40536–40555.

[5] D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire, and P. R. Inácio, Security issues in cloud environments:
a survey, International Journal of Information Security, 13 (2014), pp. 113–170.

[6] A. Hashemi, M. B. Dowlatshahi, and H. Nezamabadi-pour, Ensemble of feature selection algorithms: a multi-criteria
decision-making approach, International Journal of Machine Learning and Cybernetics, 13 (2022), pp. 49–69.

[7] C. Huang, J. Chen, S. Gong, Q. Luo, and Q. Zhu, Feature representation and selection in malicious code detection methods
based on static system calls, Journal of Central South University(Science and Technology), 45 (2014), pp. 3055–3060.

[8] U. M. Khaire and R. Dhanalakshmi, Stability of feature selection algorithm: A review, Journal of King Saud University-
Computer and Information Sciences, 34 (2022), pp. 1060–1073.

[9] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, Mapas: a practical deep learning-based android malware detection system,
International Journal of Information Security, 21 (2022), pp. 725–738.

[10] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, A multimodal deep learning method for android malware detection
using various features, IEEE Transactions on Information Forensics and Security, 14 (2018), pp. 773–788.

[11] V. Kouliaridis and G. Kambourakis, A comprehensive survey on machine learning techniques for android malware
detection, Information, 12 (2021), p. 185.

[12] M. Kumar, Scalable malware detection system using big data and distributed machine learning approach, Soft Computing,
26 (2022), pp. 3987–4003.

[13] S. R. T. Mat, M. F. Ab Razak, M. N. M. Kahar, J. M. Arif, and A. Firdaus, A bayesian probability model for android
malware detection, ICT Express, 8 (2022), pp. 424–431.

[14] M. Mijwil, I. E. Salem, and M. M. Ismaeel, The significance of machine learning and deep learning techniques in
cybersecurity: A comprehensive review, Iraqi Journal For Computer Science and Mathematics, 4 (2023), pp. 87–101.

[15] A. Mitra, B. Bera, A. K. Das, S. S. Jamal, and I. You, Impact on blockchain-based ai/ml-enabled big data analytics for
cognitive internet of things environment, Computer Communications, 197 (2023), pp. 173–185.

[16] W. Qian, Y. Xiong, J. Yang, and W. Shu, Feature selection for label distribution learning via feature similarity and label
correlation, Information Sciences, 582 (2022), pp. 38–59.

[17] J. Qiu, Q.-L. Han, W. Luo, L. Pan, S. Nepal, J. Zhang, and Y. Xiang, Cyber code intelligence for android malware
detection, IEEE Transactions on Cybernetics, 53 (2022), pp. 617–627.

[18] S. Sahoo, Big data analytics in manufacturing: a bibliometric analysis of research in the field of business management,
International Journal of Production Research, 60 (2022), pp. 6793–6821.

[19] R. Sudharsan and E. Ganesh, A swish rnn based customer churn prediction for the telecom industry with a novel feature
selection strategy, Connection Science, 34 (2022), pp. 1855–1876.

[20] A. Thakkar and R. Lohiya, A survey on intrusion detection system: feature selection, model, performance measures,
application perspective, challenges, and future research directions, Artificial Intelligence Review, 55 (2022), pp. 453–563.

[21] Y. Wu, J. Shi, P. Wang, D. Zeng, and C. Sun, Deepcatra: Learning flow-and graph-based behaviours for android malware
detection, IET Information Security, 17 (2023), pp. 118–130.

[22] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham, A two-stage deep learning framework for image-based
android malware detection and variant classification, Computational Intelligence, 38 (2022), pp. 1748–1771.

Edited by: C. Venkatesan
Special Issue: Next Generation Pervasive Reconfigurable Computing for High Performance Real Time Appls
Received: Mar 20, 2023
Accepted: Sep 1, 2023

