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VULNERABILITY DETECTION IN CYBER-PHYSICAL SYSTEM USING MACHINE
LEARNING

BHARATHI V∗AND C. N. S. VINOTH KUMAR†

Abstract. The cyber-physical system is a specific type of IoT communication environment that deals with communication
through innovative healthcare (medical) devices. The traditional medical system has been partially replaced by this application,
improving healthcare through efficiency, accessibility, and personalization. The intelligent healthcare industry utilizes wireless
medical sensors to gather patient health information and send it to a distant server for diagnosis or treatment. The healthcare
industry must increase electronic device accuracy, reliability, and productivity. Artificial intelligence (AI) has been applied in
various industries, but cybersecurity for cyber-physical systems (CPS) is still a recent topic. This work presents a method for
intelligent threat recognition based on machine learning (ML) that enables run-time risk assessment for better situational awareness
in CPS security monitoring. Several machine learning techniques, including Nave Bayes (65.4%), Support Vector Machine (64.1%),
Decision Tree (89.6%), Random Forest (92.5%), and Ensemble crossover (EC) XG boost classifier (99.64), were used to classify the
malicious activities on real-world testbeds. The outcomes demonstrate that the Ensemble crossover XG boost enabled the best
classification accuracy. When used in industrial reference applications, the model creates a safe environment where the patient
is only made aware of risks when categorization optimism exceeds a specific limit, minimizing security managers’ pressure and
efficiently assisting their choices.

Key words: Cyber-Physical Systems, Trustworthy Artificial Intelligence, Cybersecurity, Healthcare, Machine Learning, Crit-
ical Infrastructures.

1. Introduction. The healthcare landscape has changed due to the assumption of developing automation
like the Internet of Things (IoT), intelligent bio-medical sensors (BMSs), and the cloud that have increased life
expectancy rates. As a result, it raised people’s living standards. The fifth industrial revolution (industry 5.0)
is based on a cyber-physical system that connects digital diagnostic products, like computers and the Internet,
to physical processes[33]. Healthcare professionals can use H-CPS to process the sensed data and make wise
decisions. Medical practitioners must adhere to H-CPS-based procedures to provide better treatment for less
money. IoMT smart devices can gather, evaluate, and broadcast various data in a healthcare setting that uses
H-CPS.

Additionally, these wearable sensors continuously monitor the patient’s health characteristics, such as
blood pressure, temperature, and pulse rate, and communicate the information to nearby access systems for
computation and feature selection. Using Artificial Intelligence (AI)-enabled technology, the pre-processed
data is sent to remote computing equipment for disease detection or prognosis [18]. The medical sector has
recently been exposed to more complex and extensive cyber risks, drawing attention to the lack of cybersecurity
skills. For instance, the healthcare supply chain has just been exposed to a new cyber threat, becoming
more widespread and stable each year. This threat revealed the industry’s overall inadequate cybersecurity
architecture. Cyber risk is related explicitly to two concurrent advancements: First, the increasingly pervasive
incorporation of technologies, modernization, and novel healthcare systems [34], including automated treatment
pathways, electronic health records, individualized therapies, and widely scattered IoMT (Internet of Medical
Things) equipment.

On the contrary side, cybersecurity practice upgrading and invention procedures find it challenging to
keep up with the rate of advancements in technology. Because of the intersection of these two tendencies, the
healthcare industry is highly vulnerable to cyber threat, which has increased in both severity and frequency in
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recent years. The availability of the data, therefore making it impossible for legitimate owners to access the
data to make it susceptible to exploitation, as well as the integrity, correctness, and alteration of the accuracy,
are three potential targets for cyberattacks in the health sector. Knowing an individual’s or a portion of the
population’s health figure could have financial implications. The requirement to strike a balance between the
necessity for security and information privacy and the accessibility of information to maintain the essential
benefit of the person’s health adds another layer of complexity to many crucial professions, such as healthcare.
The above explains why it can be challenging to put stringent cybersecurity controls in place that hamper
healthcare, especially in times of need and urgency[11].

The use of AI as a decision support tool while leaving ultimate decision-making in the hands of people was
agreed upon by machine learning (ML), artificial intelligence, and cybersecurity. The multiple contributions to
this topic proposed some ML ’anomaly-based’ approaches. Unfortunately, there are fewer comparative studies
to determine the best effective learning method for improved detection capacity and fewer false alarms than
for ML approaches. The possibilities of boosting ML approaches’ dependability and the extent to which they
apply to real-world situations are also major open questions. Even though many security strategies for Critical
Infrastructure (CI) have been presented, there are still many obstacles to overcome to autonomously spot risks
in the face of complexity, uncertainty, and change, especially when considering phenomena like sensors are
compromised [30]. Additionally, a novel perspective on CIs has emerged recently, which they have seen as
complicated Medical Cyber-Physical Systems (HCPS).

Modern CPS comprises real and intangible elements, including databases and software algorithms for data
elaboration and electro-mechanical devices, sensors, and actuators. Threats can be both tangible and intangible
because of the nature of CPS. Cyberthreats, for example, could directly affect the physical components’ integrity
and indirectly affect the environment’s and the related parties’ overall health. These threats may also have
a chain of associated repercussions. This paper’s essential contribution is as follows: We offer a vulnerability
assessment technique for CPSs that considers cyber-physical and physical-cyber interdependencies to derive
goal-oriented attack routes. The suggested procedure:

• Artificial intelligence is a paradigm for coordinating the efforts of many machine learning algorithms
to detect and prevent harmful or malicious occurrences.

• Exposes sophisticated cyber-physical assaults by using vulnerability analysis techniques to deduce the
motivations of adversaries.

• Attack route analysis is made more efficient by switching from a blind analysis to an algorithmic
analysis with clear end goals.

• It is a practical approach to computing risk and evaluating Likelihood and Impact based on security-
relevant criteria.

The remainder of the paper is organized as follows: This document is organized for the remaining portions:
The relevant work’s outline is presented 2, while the material and methods are presented in Section 3. In
Section 4, experimental analysis is presented. Section 5 serves as the paper’s conclusion.

2. Related Work. The CPS explosive expansion, security, and privacy are necessary for reliable commu-
nication in innovative healthcare [37]. Sun et al. [24] addressed the privacy and security concerns with IoT in
the healthcare sector and remarked on the potential routes for further study. Hu et al. [16] used attribute-
based encryption to address the issue of safe communication between a BAN and its data consumer (end-user).
According to Chandrasekaran et al. [7], the technique [16]is ineffective for repeated data transfer, and they pro-
vide a novel system for safely transmitting data in WBAN. Blockchain technology was used by Egala et al. [10]
to create a safe and decentralized platform for sharing health data records without jeopardizing system privacy.
Kumar and Chand [22] presented a blockchain-based privacy-privacy data-sharing system for the healthcare
sector, where an Identity-based broadcast group encryption technique protects each transaction. As a result,
interest in managing complex cybersecurity systems increased, and AI techniques were incorporated to assist
with automation [4][13]. AI is revolutionizing cybersecurity due to extensive analysis of data, faster reaction
times, and effective customization of threat detection for limited records. Further, Artificial Intelligence has
already-existing and synergistic applications for pattern recognition and computer vision to identify physical
threats [12]. The authors of [15] have created a hybrid IoT generator, a framework for estimating cellular
network performance. This platform was combined with big data and Machine Type Communications traffic
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models.[6][1] provides information on the various ML-based strategies. The authors systematically explain how
machine learning approaches operate and offer their assessments. An overview of ML algorithms in IoT of
healthcare data is provided in [5]. This study uses supervised learning, semi-supervised learning, and unsuper-
vised learning ML model types to classify data from the healthcare industry and show the work on the data.
The threat modeling tools STRIDE [1], Factor Analysis of Information Risk (FAIR)[5], and OCTAVE [9] have
all been utilized in the process of assessing the level of risk present in CPSs across a variety of application areas.
Another prevalent strategy[35] combines two or more methodologies: STRIDE and CVSS. It is possible that
the ”traditional” impact criteria of confidentiality, integrity, and availability will not be sufficient for CPSs;
consequently, the methods used to assess the cyber risk posed by these systems must typically be industry-
specific. This is why research on the safety and security of CPSs is carried out simultaneously. In [20], we
comprehensively analyze different approaches to co-engineering of safety and security. In [23], we summarize
risk assessment techniques applicable to the smart grid scenario. Kandasamy et al. [19] presented a general
overview of the methods for assessing the Internet of Things risks. A rundown of a few methods for determin-
ing how vulnerable SCADA systems are to attack is provided for us in reference [8][26] delves into the various
approaches that can be taken to perform risk assessments in the automotive sector. Recent research, such as
that presented in [25], examines various risk assessment strategies for CPS from the perspectives of safety, se-
curity, and the integration of all three and proposes specific categorization criteria. Current approaches to risk
assessment for CPSs, which primarily focus on either one or the other of these two types of interdependencies,
ignore, for the most part, cyber-physical and physical-cyber interdependencies. When researching the system,
the authors of[29] focused on its physical components, whereas Homer et al. [14] investigated only the system’s
cyber components. It has been demonstrated by Krotofil et al. [27] that this is not the case, despite the fact
that attackers may use the physics of the mechanism that is behind a CPS. When it comes to developing
security policies, these same authors argued that the physical process layer should be considered. According
to[28], research into cyber-physical systems needs to adopt a more comprehensive methodology because of the
complex intertwining of computer networks and physical processes.

Regrettably, to the best of our knowledge from Table 3.1, no risk assessment method that satisfies this
criterion has ever been made public. This study covers a knowledge gap with its recommended practices.
The recommended strategy facilitates research of the entire cyber-physical system for each undesired event,
in contrast to present methodologies. As a result, the review shows some of the disadvantages over existing
methods; hence, in this work, three possibilities were evaluated to find the optimum strategy that will build up
the existing research gaps.

Possibility 1: This work uses binary classification to alert the customer whenever an abnormality has
been found by identifying its kind or context. Knowing the nature of a threat is necessary to take adequate
preventative measures, even though its identification is crucial.

Possibility 2: Given the four components that make up the system, this instance seeks to tell the operator
about the one that the anomaly has affected. As a result, it is an inter-categorization. The classes investigated
are 5: pulse rate, temperature, SpO2, blood pressure, and the scenario in which an anomaly impacts no sensor.

Possibility 3: The most recent experiment aimed to categorize the incidents into the following categories:
failure, damage, accident/damage, cyberattack, failure/damage, and, ultimately, the lack of abnormalities. The
response time could be significantly shortened by resorting to relevant risk management by providing the user
only with the known malicious scenario.

3. Materials and Methods. This paper examines five machine-learning techniques to discover trends in
PCA information. They categorize strange events using the selected models, including hardware (sensor issues),
cyberattacks, and sabotage. Naive Bayes, SVM, DT, RT, and Ensemble crossover XG boost classifiers are the
models that have been chosen depending on the latest research and taking into account the FPR rates attained
by prior research. The overall system architecture was shown in Figure 3.1.

Data are periodically gathered from various patients. These data comprise multiple situations structured in
CSV files across a range of time—the length of the file changes according to the circumstance and malfunctioning
element. Typical operational occasions and strange events include physical malfunctions and cybersecurity
issues. For example, a decision-maker may need to understand these scenarios or become aware of them when
malicious activity occurs. Attack analysis are crucial because poorly handled circumstances may result in highly
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Table 2.1: Comparative analysis of existing methodology

Tag Year Protocol Attack Entrypoint Control Evaluation met-
ric

Type

1 2022
Khadr
et al.
(2022)[21]

ZigBee Jamming S-S Parallel-Channel
Security-aware
Medium Access
Control (PCS-MAC)
algorithm

Throughput Physical

2 2022 Yu
and Park
(2022)[39]

IEEE
802.15.6

Eavesdropping, brute
force, service disruption,
masquerading

E-S, S-C Authentication
protocol based on
blockchain technol-
ogy and PUFs

Computation
time, communica-
tion overhead

Simulated

3 2022 Pu
et al.
(2022)[32]

IEEE
802.15.6

Eavesdropping, data
manipulation, replay,
service disruption,
masquerading

E-S, S-C Lightweight, anony-
mous authentication
and key agreement
protocol

Communication
overhead, com-
putation time,
energy consump-
tion, CPU time,
CPU cycles

Simulated

4 2021
Alzahrani
et al.
(2021)[3]

IEEE
802.15.6

Eavesdropping, brute
force, replay, mas-
querading

E-S, S-C Authenticated key
agreement based
on Burrows-Abadi-
Needham (BAN)
Burrows et al. (1990)
logic

Computation
time, communi-
cation overhead,
energy consump-
tion

Simulated

5 2021
Wang
et al.
(2021)[38]

IEEE
802.15.6

Eavesdropping, data
manipulation, replay,
service disruption,
masquerading

E-S, S-C Authentication
protocol based on
blockchain technol-
ogy and PUFs

Computation
time, communica-
tion overhead

Simulated

6 2021 Hus-
sain et al.
(2021)[17]

IEEE
802.11

Eavesdropping, data
manipulation

S-C, W-C Physical layer
scheme (Gray code)

N/A Physical

7 2021 Sur-
minski
et al.
(2021)[36]

IEEE
802.11

Eavesdropping, buffer
overflow

C-A Remote attestation Runtime, energy
consumption,
communication
overhead, race
conditions

Hybrid

8 2020 Al-
ladi et al.
(2020)[2]

IEEE
802.15.6

Eavesdropping, data
manipulation, mas-
querading, ARP spoof-
ing, replay

S-C, W-C Two-way, two-stage
authentication proto-
col using PUFs

Computation
time

Simulated

negative operating costs.
The following stages can be used to breakdown the suggested method:

3.1. Data Collection. The dataset was obtained from iot-healthcare-security-dataset. The provided
dataset includes regular and malicious traffic data for IoT healthcare use cases. A use case was developed for
an Internet of Things (IoT)-based Intensive Care Unit (ICU) consisting of two beds. Each bed has nine patient
monitoring devices (See Figure 3.2), sensors, and one control unit known as the Bedx-Control-Unit. All of these
devices were developed with the IoT-Flock tool.

The proposed ICU system is based on the Internet of Things (IoT) technology and has a capacity of two
beds. Each bed is equipped with nine patient monitoring devices, often called sensors, along with one control
unit. The term used to refer to this entity is the Bedx-Control-Unit, where ’x’ is the number assigned to
each bed, ranging from Bed1 to Bed2. The responsibility of the Bedx-Control-Unit encompasses several tasks,
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Fig. 3.1: Suggested Architecture of Cyber-Physical System

Fig. 3.2: Dataset description

including but not limited to configuring the time profile, determining the dosage administered by an infusion
pump, and activating emergency alarms. These activities are contingent upon the patient’s physical status, as
monitored by the patient monitoring devices.

In a similar vein, an additional control unit was included to facilitate the monitoring of environmental
equipment, which was that named the Environment-Control-Unit. The Environment-Control-Unit is tasked
with regulating the environmental conditions inside the Intensive Care Unit (ICU), including maintaining
specific temperature and humidity levels, detecting the presence of smoke, and activating an emergency alert in
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Table 3.1: Patient monitoring sensors

Device Name Description Data Profile Time
Profile

Remote Electrocardiogram
(ECG) monitoring

Test the electrical and muscular functions
of the heart

Pulse Rate (0-200 bpm) 1.0 s

Infusion Pump A generic device is used to deliver the nu-
trients and drugs to the patients at a con-
trolled amount

Dose (10-100 mL) 10.0 min

Pulsoximeter (SPO2) A device that tells the oxygen saturation
(i.e.,amount of oxygen dissolved) in blood

Oxygen in blood (35-100%) 1.0 s

Nasal/Mouth AirFlow Sensor Provides the (breathing) respiratory rate
of a patient

Device Respiratory rate (0-
60ppm peaks/min)

1.0 s

Blood Monitor Sensor Measure the pressure of the blood in the
arteries when the heart beats

Systolic & diastolic pressure (0-
300 mmHg)

2.0 s

Glucometer A device used to determine the amount of
glucose in the blood.

Glucose in Blood (10-150
mg/dL)

10.0 min

Body Temperature Sensor Measures the temperature of the
body

Temperature (0-120 F) 10.0min

Electro-myography (EMG)
Sensor

Measures the electric potential produced
by the body’s muscles

Muscle
rate(contractions/min)(0-
60cpm)

5.0min

Galvanic skin response (GSR)
Sensor

Measures the electrical conductance of skin Conductance(0-20uS)(micro
Siemens)

5.0 min

the event of critical situations in order to uphold the necessary ICU environment. In our specific scenario, both
the devices used for patient monitoring operate on the MQTT protocol. The MQTT protocol is characterized
by its connection-oriented nature and ability to guarantee the appropriate transmission of packets. Table 3.1
presents an overview of the use case for IoT-based intensive care units.

The attacks identified using this dataset include an MQTT distributed denial-of-service, MQTT publish
flood, brute force, and SlowITE attack. The following sections describe the types of attacks that IoT-Flock
supports.

• MQTT Publish Flood— A Distributed Denial of Service (DDoS) attack has the potential to deplete
the available network bandwidth and exhaust the resources of the targeted victim system. Due to
the implementation of more effective mitigation strategies at the network and transport layers, DDoS
attackers have shifted their focus towards attacking the application layer. Internet of Things (IoT)
devices adhere to either the periodic or event-driven paradigm when transmitting data via application
layer protocols. The systematic model device transmits data at regular intervals, such as the tempera-
ture sensor sending temperature data to the server every five seconds. In the context of event-driven
models, devices transmit data only in response to specific events. For instance, inside an intensive care
unit, a motion sensor will only transmit data to the server upon detecting activity in the designated
area. According to recent literature, it has been observed that the act of publishing messages at a rapid
rate using the MQTT protocol might potentially lead to a denial of service attack. These assaults can
potentially impede data transmission significantly and pose substantial risks, particularly in critical
sectors such as industrial operations, smart hospitals, and smart transport systems. The potential
consequences of data transmission delays may result in the destruction of assets and pose significant
risks to human life.

• MQTT Authentication Bypass Attack —To establish a connection with the MQTT broker, which
necessitates authentication, MQTT clients transmit MQTT connect requests that include fields for
username and password. The discovery was made that the authentication mechanism of MQTT may
be circumvented by omitting the password field from the MQTT packet and just supplying a valid
username. Despite the mitigation measures used in recent versions of MQTT brokers, the processing



Vulnerability Detection in Cyber-Physical System Using Machine Learning 583

of erroneous packets by an MQTT broker may still result in operational delays, particularly when such
packets are sent in substantial quantities. Hence, using IPS to block such an unauthorized packet can
mitigate the latency problem associated with the MQTT broker.

• MQTT Packet Crafting Attack —The present assault involves deliberately manipulating MQTT pack-
ets to cause a targeted application to malfunction or cease functioning entirely. The assailant initiated
a connection with the MQTT broker at the Transport layer and started publication without first issuing
a connection request to the MQTT broker.

• COAP Replay Attack— During this attack, an unauthorized individual does an initial network scan to
get the addresses of COAP clients and servers and payload information. Subsequently, the unauthorized
individual modifies the payload by substituting it with inaccurate data and transmits it to the COAP
server, using a deceptive technique that mimics the Sensors 2021, 21, 3025 12 of 19 COAP client IP. The
magnitude of this assault becomes apparent when examining instances in which environmental sensors
use COAP protocols to relay ambient data to the COAP server. This may be illustrated when the
temperature sensor transmits fluctuations in the intensive care unit’s temperature. Subsequently, the
condition is established by using the data mentioned above. In the event that an assailant employs IP
spoofing techniques, they may transmit a manipulated ICU temperature reading, including anomalous
values, hence instigating severe and detrimental consequences inside the ICU environment.

3.2. Data pre-processing. This step aims to clarify the information more understandable for the user.
The first three steps in pre-processing are: a) Data arrangement: The information must be shown in a logical
manner. b) Data scrubbing: Any corrupted or missing data must be removed, replaced, or added to the data. c)
Sampling Data: Data must have been sampled regularly before being transferred via communication channels
to eliminate redundancy without compromising information.

Transform the data following the algorithm and your understanding of the issue. Feature scaling, decon-
struction, or aggregation are all examples of transformation. Features can be aggregated to merge numerous
instances into a single element or decomposed to retrieve the valuable components embedded in the data. Three
distinct yet interconnected steps can be used to describe this process:

3.3. Vulnerability prediction. For the prediction of the CPS vulnerability in which the visualized data
can be split up into train and test data, are separately given as input for the Nave Bayes, Support Vector
Machine, Decision Tree, Random Forest, and Ensemble crossover XG boost classifier listed below,

a.Decision Tree (DT) Classifier. A DT is a simple classifier that may be used to put data into groups.
In DT, the data is continuously segmented according to a predetermined criterion. Well-known in the field of
supervised classification are the DTs. They are effective at categorization tasks, have straightforward decision-
making processes, and can be created (trained) quickly and easily thanks to an efficient algorithm. Since it was
one of the first elite regression analysis techniques taught to those studying predictive modeling, it has become
one of the most well-known approaches in the field.

X = [Dx, Dy] (3.1)

where Dx and Dy are the factors that go into the equation,

Dx =
1

3

∑n−1
i=0 (Xi +Xi+1) (YiXi+1 − Yi+1Xi)∑n−1

i=0 (YiXi+1 −Xi+1Xi)
(3.2)

and

Cy =
1

3

∑n−1
i=0 (Xi +Xi+1) (XYi+1 −Xi+1Yi)∑n−1

i=0 (Xixi+1 −Xi+1Yi)
(3.3)

b.Random Forest (RT) Classifier. The supervised ML model includes the ML approach known as
Random Forest. There are several different types of DTs that make up the RF classifier. The predicted
accuracy is increased by averaging the subsets of all trees. Instead of relying on only one set of decision trees,
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RF takes the average of all the votes to determine the outcome. Each branch of the decision tree responds to
a question regarding the current state of affairs.

Possible values for the Xi property of a nominal (divided) data set are Li, . . . , Lj . To get the Gini Index
for this characteristic, use the following Equation (3.4) formula.

G (Xi) =

j∑
j=1

Pr (Yi = Lj) (1− Pr (Yi = Lj)) = 1−
j∑

j=1

Pr (Yi = Lj)
2 (3.4)

c.Naïve Bayes (NB) Classifier. It is easy to estimate conditional probabilities using the Bayes’ theorem.
The Equation (3.5) looks like this:

P (A | R) =
P (R | A) ∗ P (A)

P (R)
(3.5)

where R and A are random variables, P (A | R) is the probability that Y if X is true,P (R | A) is the probability
that X if R is true, P(R) is the probability of X, and P(A) is the probability of Y if A is true.

d.Support Vector Machine.Data vulnerability Classification and Estimation Using a Support Vector
Machine Model. In this investigation, we focus on the classification of signal quality, which is often a two-
classification issue. In several cases involving categorization into two groups, the SVM-based model performed
well. For a given training set {xi, yi}, i = 1 . . . ,K, where xi is a feature vector of lengthxi ∈ Rd, and yi is
the label, it is possible to train a classifier. Therefore, the SVM-based model may be used for both estimating
and classifying signal quality. The quality estimate label is yi ∈ {1, 0}, where excellent and terrible represent
extremes. yi ∈ {1,−1} is the categorization label for abnormal and normal cases. The goal of a support vector
machine (SVM) classifier is not only to differentiate between the classes, but also to create a hyperplane between
them. It is also possible to build the ideal hyperplane by solving Equation (3.6),the following optimisation issue.

minϕ(V) =
1

2

(
VTV

)
+ C

K∑
i=1

ξi (3.6)

subject to

yi
((
VTφ (xi)

)
+ b

)
≥ 1, i = 1, · · · ,K.

Here ξi is a error relaxation variable and ξi ≥ 0, C is a factor of penalty, and w is the coefficient vector. φ(xi)
is presented in order to construct a nonlinear SVM. Converting the optimisation issue into Equation (3.7).

maxL(α) =

K∑
i=1

αi −
1

2

K∑
i,j=1

αiαjyiyjκ (Yi,Yj) (3.7)

subject to
K∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, · · · ,K

where k (xi, yi) is a kernel function. In this work, the RBF kernel function is used. Furthermore, sigma has
been determined experimentally to be 14.

e. Ensemble crossover XGBoost. This DT ensemble uses gradient boosting, which allows it to scale
very well. Similar to gradient boosting, XGBoost maximises an objective function by minimising a loss function.
Due to XGBoost’s exclusive reliance on DTs as base classifiers, a modified loss function is used to regulate the
tree complexity, as shown in Equations (3.8) and (3.9).

Lxgb =

N∑
i=1

L (yi, F (Yi)) +

M∑
m=1

Ω(hm) ,

Ω(h) = γT +
1

−λ
∥ω∥2.

(3.8)
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where the leaf output scores are indicated by the symbol ω and T is the number of leaves on the tree. A
prepruning method can be created by incorporating this loss function into the split criterion for decision trees.
Higher values result in simpler trees. The amount of loss reduction gain needed to split an internal node is
determined by γ. In XGBoost, shrinkage is a further regularisation parameter that lowers the additive expansion
step size. Lastly, other strategies, like tree depth, can be employed to keep the complexity of the trees to a
minimum. Reduced tree complexity has the added benefit of accelerating model training and requiring less
storage space.

The number of records classified as normal, uncertain, or abnormal in each of the reference categories is
used to calculate the overall score.

These numbers are denoted by Nnk, Nqk, Nak, Ank, Aqk, andAak. The various categories of risk level are
represented as follows (based on the distribution of the complete test set):

V a1 =
Particular attack abnormal records

total abnormal records ,

V a2 =
Particular attack abnormal records

total abnormal records .

V n1 =
Dataset cluster normal records

total normal records ,

V n2 =
Dataset cluster normal records

total normal records .

(3.9)

The sensitivity and specificity ratio are defined as (based on a subset of the test set) Equations (3.10) and
(3.11).

SeVa1
Aa1

Aa1 +Aq1 +An1
+ V a2

Aa2 +Aq2
Aa2 +Aq2 +An2

(3.10)

Sp =V n1
Nn1

Na1 +Nq1 +Nn1

+ V n2
Nn2 +Nq2

Na2 +Nq2 +Nn2
.

(3.11)

The overall risk score is then the average of these two values:

Overall vulnerable score =
(Se+ Sp)

2

4. Experimental Analysis. The software Matlab has been used to implement the algorithms. The
outcomes for each scenario are displayed below.

The simulated output is illustrated in Figure 4.1. The vulnerability was classified as normal and abnormal
depending on the obtained risk score. Then, the attack type was identified as MQTT publish flood.

When applied to all of the information that makes up an entire epoch, the loss function yields a numeric
estimate of the loss during that time. While developing an iterative curve, some data will inevitably be lost. The
resultant curve shows that training and testing the classifier took much less time and effort when compared to
previous approaches. Our model is underfitted if there is a substantial gap between the training and validation
losses. The training loss may be reduced if more data were included in the sample. (either the overall number of
layers or the number of neurons in each layer). Figure 4.2 displays the data we used to calculate the validation
loss. However, when evaluating a model’s performance on the validation set, the validation loss statistic is the
statistic of choice. The validation set is a subset of the data used to evaluate the performance of the model.
The sum of all false positives in both the validation set and the training set is the testing loss. The proposed
EC-XG boost strategy results in much lower amounts of level loss than the currently available mechanisms.

The simulated output of the vulnerable values in the dataset by the suggested algorithm was demonstrated
using a sample illustrated in Figure 4.3.
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Fig. 4.1: Simulated output

Fig. 4.2: Epoch Vs. Loss

As of from Figure 4.4, training and validation accuracy was calculated. Here, a high level of training and
testing accuracy was obtained, showing the mechanism’s efficiency.

Some performance measures are shown below that may be used to verify the effectiveness of the proposed
technique. The following metrics have been calculated using the equations (4.1) (4.2) (4.3) to evaluate the
trained models:
Accuracy: It counts how many potential exploits were accurately identified. How well the findings mirror the
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Fig. 4.3: Simulated vulnerability data prediction output

Fig. 4.4: Epoch Vs. accuracy

actual outcomes is determined by this factor.

Accuracy =
(TP + TN)

(FN + FP + TN + TP )
(4.1)

Precision: It determines how accurate the suggested technique behavior is by separating required vulnerable
code from the dataset

Precision =
TP

(TP + FP )
(4.2)

Recall: The ratio of correctly predicted instances and all instances

Recall =
TP

(TP + FN)
(4.3)
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Table 4.1: Binary classification comparision

Methodology Accuracy(%)
SVM 64.1 %
NB 65.4 %
DT 89.6%
RF 92.5 %
EC-XG boost 99.64 %

Fig. 4.5: Classification outcome of an algorithm.

Table 4.2: Comparative analysis of the different classifiers

Classes Decision Tree SVM RF NB Ensemble XG Boost
Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Class 1 87.1 86.2 6.2 68.5 91.7 92.4 14.1 50.2 98.5 99.1
Class 2 84.3 86 9.7 16.5 90.5 91.2 73 10.3 97.2 98.3
Class 3 86.2 87 32.1 10.4 91.3 92.7 25.5 10.1 99.4 98.9
Class 4 87.4 87.3 23.5 11.5 90.4 92.5 80.3 10.5 99.5 99.3

where
True Positive (TP) : actual = 1, predicted = 1
True Negative (TN) : actual = 0, predicted = 0
False Positive (FP) : actual = 1, predicted = 0
False Negative (FN) : actual = 0, predicted = 1

The classification results of the five algorithms applied to the dataset are shown in Figure 3.2. For En-
semble crossover XG boost, RF, and DT, the maximum accuracy was attained at 99.64%, 92.5%, and 89.6%,
respectively.

As of from the table 4.1 and figure 4.5 Ensemble crossover XG boost, RF performs the best, with 99.64%
and 92.5% accuracy. The importance of highlighting that both techniques exhibit high Recall and Precision
per class, as well as increased sensitivity and a low number of false positives, cannot be overstated and is
highlighted in Figure 4.6. 99.64% and 92.5% accuracy are obtained using XG boost and RF, respectively. Due
to a correlation between the various cases, which prevents a clear differentiation, the remaining algorithms
under examination perform worse than those previously analyzed.

The comparative analysis of the different classifiers over precision and recall was done in Figure 4.6 and
Table 4.2. From the analysis, the crossover XG boost classifier overcomes the other methodology by obtaining
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Fig. 4.6: Comparison of Recall and Precision.

a high range of precision and recall.
To prove the efficiency of the suggested methodology it can be compared with the existing methodolo-

gies [31].
From the result obtained from the above analysis (See Table 4.3), it was revealed that the suggested EC-

XGboost methodology expresses more satisfied results than other existing mechanisms by getting a higher range
of performance ratio over CPS vulnerability prediction than the other mechanism in use.
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Table 4.3: Comparative performance analysis

S.No Methods AUC TN FP FN TP Accuracy(%) F1 Time (s)
1 ResNet 0.8490 82.270 11.320 3.490 2.920 85.190 28.290 6330
2 Inception 0.9610 93.500 0.200 4.100 2.310 95.710 51.760 9760
3 FCN 0.9550 88.160 5.430 3.920 2.490 90.650 34.760 10160
4 MLP 0.7580 72.220 21.370 4.860 1.550 73.770 10.550 1130
5 GC-LSTM + Resnet 0.9740 93.290 0.310 3.270 3.140 96.420 63.770 10560
6 GC-LSTM + Inception 0.9760 92.100 1.490 3.350 3.060 95.160 55.870 14090
7 GC-LSTM + FCN 0.9720 92.280 1.30 3.680 2.730 95.010 52.260 1342. 0
8 GC-LSTM + MLP 0.9370 93.400 0.190 6.130 0.280 93.680 8.140 765. 0
9 CyResGrid 0.9840 93.470 0.130 3.420 2.990 96.450 65.030 714. 0
10 Ensemble crossover XG Boost 0.990 94.0 0.0010 2.000 3.200 99.60 98.90 50

5. Conclusion. To enhance the maintenance of the integrity of CI based on CPS, this work aimed to
construct computational mathematics on a pertinent case analysis with appropriate information. The overall
evaluation revealed that Ensemble crossover XG boost, RF, and DT outperformed SVM and Naive Bayes in
performance. Ensemble crossover XG boost demonstrated the best performance across all algorithms, with
99.64% accuracy in scenario classification. The dataset’s instance count should be increased to improve En-
semble crossover XG boost accuracy. Cyber-physical security significantly impacts society, business, and the
economy and is crucial to safeguarding vital infrastructure. Protection against cyber threats can be considerably
enhanced by awareness of the most recent technology and dangers. To improve scenario identification, rescue
operations, and strategic planning, it will be essential for CPS security in the future to automate threat detec-
tion and the activation of suitable remedies using Security Orchestration, Automation, and Response (SOAR)
systems. Our proposed approach will eventually be used for virtual and distributed Linux deployments. We
also aim to use a caching method and batch processing to boost our solution’s speed. Each microservice in
our architecture will use a ”PROSPECT” secure data container, allowing for granular role-based and attribute-
based access control to be applied to the settings stored within. A relational database management system
would be combined with this.
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