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SPACECRAFT TEST DATA INTEGRATION MANAGEMENT TECHNOLOGY BASED ON

BIG DATA PLATFORM

NANQI GONG∗

Abstract. In this paper, a general test platform for spacecraft data management is designed and constructed. This paper
introduces a portable software development environment based on LUA. The technology of space environment data management,
comprehensive analysis, parameter correction and visual display of spacecraft is realized. The relationship between continuity,
mixed dispersion, variation and indication of remote sensing data is studied. This project uses the integrated Long Short Term
Memory network (LSTM) technology to detect anomalies in satellite remote sensing observation data. Give full play to the
advantages of laser scanning tunneling microscope in the nonlinear field. The combination of this method and the matrix method
can improve the adaptive ability of spacecraft in an operation state to better identify abnormal information in remote sensing data.
Experiments show that the algorithm can significantly improve the anomaly detection rate of the system. The system can monitor
the front test device and record the data. The method can be connected with the space vehicle’s central control and automatic
test system. The comprehensive management of the integrated test system of space vehicles is realized.
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1. Introduction. The spacecraft data processing subsystem (DMS), as the ”brain” of spacecraft, plays
an essential role in space information processing. DMS undertakes remote sensing measurement in aviation
systems, such as remote sensing data collection and transmission, remote control command receiving and
execution, flight plan maintenance and space flight routine work. Each subsystem on the spacecraft is subject
to distributed control management, so the stability and reliability of distributed control management are crucial
to the successful operation of the spacecraft. DMS functional testing is significant. Spacecraft face a highly
complex space environment when they fly in space [1]. It involves all kinds of particle radiation, electromagnetic
radiation, atomic oxygen, temperature changes, etc. Real-time monitoring of the space environment and
obtaining relevant space environment information have practical application value and prospects. It provides
a good condition and basis for the country’s high-life and high-quality artificial satellites. At the same time,
the spacecraft data processing subsystem will also provide necessary data support for space weather prediction
and scientific research [2]. Promoting the international exchange of space environment detection technology
and data in China is of great significance.

Scientific space environment monitoring is significant to studying astrophysics and planetary evolution.
There has been a long history in the field of automatic detection of space vehicles. The software and hardware
products on the space vehicle have formed a relatively complete automatic detection method library [3]. The
system can realize the function check and reliability test of hardware equipment and software. Some scholars
have proposed a ground test device for space vehicles based on artificial intelligence. This system has an auto-
matic discriminating ability similar to conditional criteria. The system is applied to the automatic verification
test of the power supply and distribution equipment of space vehicles, which can improve the verification test
effect of the equipment. In recent years, the automatic detection technology of spacecraft has been dramatically
developed in China. The method has been successfully used in space fields such as human-crewed spaceflight
and the Beidou satellite. However, the current automated test system design at home and abroad mainly focuses
on the execution of spacecraft test sequences. Most related systems are configured at the back-end level of the
EGSE system. Little attention has been paid to the automatic operation of the front-end test unit. Although
some automatic detection systems have detection devices, they can only complete the command control of the
detection devices. It cannot obtain the working condition of the device under test in time. The device has
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a good coupling relationship with the tested space vehicle. In addition, the system is highly dependent on
hardware. The development of a new standardized intelligent test platform can fully meet the testing needs
of space agencies. The system platform designed in this paper abstracts the test business of the spacecraft
data management subsystem, thus completing the standardization of the organization structure, test flow and
communication protocol of the spacecraft data management subsystem test system [4]. At the same time, in-
troducing the LUA scripting language makes the test program customization more intelligent and standardized.
The test bed is also a reconfigurable system. The system can be tested under the imperfect spacecraft data
processing subsystem architecture.

2. Design of automatic management system.

2.1. System Software Architecture. Based on the mature integrated automatic detection technology,
an automatic detection technology for spacecraft front-end detection devices is proposed. This system uses
Visual Studio software. The software is designed according to the modularization idea [5]. Divide the system
functions to be completed into several functional modules. The data interface between each module is straight-
forward. It has good expansibility in device type and function control. Figure 2.1 shows the architecture of
the entire system. It is mainly divided into six parts: 1) The network communication part completes the
network interface function of the system. A network connection is provided between the managed front-end
test device and the master control master test processor (MTP). Receive the health information sent by the
managed device and process the content of the information according to the agreement. Send the control
command to the device and get a reply. 2) The data analysis function module retrieves packets sequentially
from a valid packet cache queue. According to the designed packet format, the spacecraft identifier, the local
time of the sending time of the sender, the device identifier of the sender, the device identifier of the receiver,
the information identifier, the cumulative count of the packet sending of the sender, and the data content are
analyzed. The identification of this information determines the status of this level. And write the received data
into a log file. 3) The instrument control module is dynamically maintained as a data link table. Managed
devices can be added or removed via the system’s software interface or profile. Device information includes
device name, device number, control instruction name, control instruction number, IP address, port number,
etc. The network communication module receives the control indicator and analyzes the indicated content.
The device generates an indication response according to the communication protocol and returns a message
to the network communication module. 4) The program’s sequence implementation part reads the instruction
sequence selected by the human-machine interface. According to the command number and the device ID, it
is sent to the device management module as the corresponding command. You can set the time interval for
instruction execution, the number of loops, and boundary conditions. 5) The data file module records the diary
data generated by the system in its operation and the data received by the managed device. At the same time,
it makes an instant recording. 6) Display/operation module displays the working status of the system. Various
types of status information transmitted by the managed device respond to the tester’s input. It is a kind of
management system software with a man-machine dialogue function.

2.2. System module design.

2.2.1. Product structure module. According to the four levels of whole, cabin, cabin board and equip-
ment, the prototype is constructed to realize the whole structure of the product. The process prototype is
summarized from the system’s overall structure, final assembly design pattern, subsystem design pattern and
related design documents. The system was produced during the integration process. The creation process is
shown in Figure 2.2.

2.2.2. Spacecraft data transmission module. The same information is often recorded in multiple
places during the AIT process. Such duplication of data leads to ”data contradictions.” This situation has
an impact on the tracking of the process. Therefore, the system should follow the principle of consistency
of data sources. Ensure all data is transferred from existing systems or entered via files etc. According to
different information systems, the corresponding communication mode and interface are designed in this paper
[6]. The system is integrated through network service, ETL, intermediate table synchronization and other
methods to determine whether the transmitted data is complete. The data management system itself only
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Fig. 2.1: Software module and interface of the front-end detection device AIS.

transfers data from other data systems. The data outside the work network is entered into the corresponding
information system through the physical media. Then use the data interface of the office network to transmit this
information. See inter-system data integration relationship Figure 2.3 (image cited by the National Aeronautics
and Space Administration).

2.2.3. Space data reconstruction and contact module. The data reconstruction and association
module reconstructs process-based data. Connect it to the ”Product Architecture Framework” to complete the
data content filling. Figure 2.4 shows the process flow.

The information in the message display system comes from different systems. Benchmarking and versioning
the data in the process is necessary to ensure the integrity and accuracy of AIT process data [7]. Keep the
same version of data for each dimension. This can effectively prevent the query error caused by the difference
in data.

2.2.4. Data Application Module. The data module is used for statistics and a summary of the forms
of each module. It includes all biased data, custom queries and data mining. The retrievability and scalability
of AIT data are realized through the configuration and management of big data such as Impala. Thus, the
vertical comparison between the same model and the horizontal comparison between the different models is
achieved. For example, it can quickly compare the execution records of each disassembly and site photos in
multiple disassembly operations of an important part. The assembly situation and data of the same type of
equipment on the same batch of satellites are easily compared.
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Fig. 2.2: Data generation process based on product structure.

3. Anomaly detection of spacecraft remote sensing data based on LSTM. LSTM model neglects
the modal characteristics of remote control commands when establishing remote control commands. This will
affect the accuracy of the forecast. This dramatically impacts some problems existing in satellite remote sensing
data. This project plans to conduct research from three aspects: 1) Feature extraction of control commands.
2) Multi-LSTM model training. 3) Anomaly detection method based on remote sensing data. This paper
presents an algorithm for anomaly detection of remote sensing data using an integrated LSTM prediction
model (Figure.3.1).

3.1. Excavation of Control command pattern. The algorithm is performed before the LSTM predic-
tion model is started. The first is the preprocessing of these training samples. The method of cluster analysis is
used to classify them [8]. Among them, the preprocessing of training data and the mining of remote indication
control mode are the focus of this paper.

3.1.1. Training data preprocessing. The training set R can be regarded as a set of n dimensional
vectors at time t . rt = {rt1, r
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command at time t . {rtn} is the telemetry data at time t . Then the expression R for the training set of
telemetry data containing a subsystem is:
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Then R is reconstructed. Because the telemetry data at the next moment is related to the remote command
at the next moment, and the telemetry data at the previous time is related to the corresponding remote
command [9]. Therefore, when constructing the input, R̃ is divided into multiple submatrices R∗

m containing
continuous-time vectors. Each submatrix contains telemetry data and global remote control instructions within
st time. Input R̃ for reconstruction is represented as follows

R̃ = {{R∗

1} , {R
∗

2} , · · · , {R
∗

m} , · · · } (3.2)
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Fig. 2.3: Data integration relationships between different systems.

Spacecraft test data integration management technology based on big data platform 

Fig. 2.4: Data reconstruction and association process.
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Fig. 3.1: Anomaly detection method of remote sensing data integrated with LSTM prediction model.

3.1.2. Remote command control mode mining. Take input R̃ as an example to extract the remote
control instruction D∗

m in each submatrix R∗

m. In this way, the control instruction matrix D∗corresponding to
R̃ is obtained.
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By calculating the S2 norm of D∗ submatrix. In this way, a set of control mode feature vector ||D∗||2 is
obtained.

||D∗||2 = {||D∗

1 ||2, ||D
∗

2 ||2, · · · , ||D
∗

m||2, · · · } (3.5)
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)

(3.6)

Reorder the values in the control mode feature vector ||D∗||2. The median in ||D∗||2 is taken as the
threshold by dividing it into two sub-training sets. The similar sequence of centralized remote instructions
divides the training set into 2 classes.

3.2. Multi-LSTM prediction model training. LSTM prediction model respectively trained the two
sub-training sets obtained by pattern mining and clustering. For example, the reconstructed training matrix R
is used as input for telemetry data prediction. Let t = st, the prediction process is as follows:
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f̂(x)
m+t+1

is the predicted value at time m+ t+1. When constructing the prediction model, the absolute error
function (MAE) is the loss function of the LSTM prediction model:

MAE(f(x), f̂(x)) =

m
∑

i=1

|f(x)i, f̂(x)i|

m
(3.8)

m is the number of total predicted values. f(x)i is the i true value.

The optimal solution of LSTM prediction model is Adam. The sensitivity of the method to non-normal
changes is improved [10]. To avoid overfitting, the memory modules of each hidden layer cannot enter the
LSTM learning. This approach is also known as dropout. LSTM prediction model P and LSTM prediction
model Q are obtained after all the sub-training sets are trained.

3.3. Telemetry data anomaly detection model. After the training of the LSTM prediction model P
and LSTM prediction model Q. The test data will be separately passed through each prediction model. Two
prediction sequences were obtained [11]. The final prediction sequence is obtained by integrating two groups of
prediction sequences according to specific weights.

The test data is reassembled using training set R̃ as an example [12]. The reconstructed test set was
simultaneously predicted by LSTM prediction model P and LSTM prediction model Q to obtain two sets of

prediction sequences. Telemetry data prediction set P, f̂(x)P =
{
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2
P , · · · , f̂(x)

t
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}

respectively. The prediction sequence Ŷ is

obtained by integrating it with the weight matrix ζ.
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R∗

t as some input at time t. The corresponding remote control instruction matrix D∗

t obtains the predicted

value f̂(x)t+st+1

P at time t+ st +1 through the prediction model P . D∗

t obtains the predicted value f̂(x)t+st+1

Q

at time t+ st+1through the prediction model Q. If D∗

t corresponds to S2 norm ||D∗

t ||2 belongs to the training
set P , then:
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Q (3.10)

If D∗

t corresponds to S2 norm ||D∗

t ||2 belongs to training set Q.

4. Experimental verification and result analysis. The test data used in this paper are from the
NASA Report published by NASA. It contains Acoustic Memory Activities and Cryptography (SMAP) and
the Marten Stein Science Laboratory (MSL). Finally, the remote sensing data of the fusion LSTM model is
analyzed, and the results are compared with those of the traditional LSTM model.

4.1. Experimental Settings. The training and calibration data include the telemetry data and the
corresponding telemetry indication of each channel of 12 subsystems in SMAP and MSL. Ninety-four data sets
in total. There were 47 groups (50%) with SMAP. There are 47 groups (50%) that are MSL. Each training set
contains 11 remote control commands [13]. The number of remote sensing data sets varies from 300 to 4,000.
The specific total number of training data, abnormal sequences, test telemetry channels and detection data are
shown in Table 1.

4.2. Comprehensive LSTM tests the anomaly detection algorithm in remote sensing data.

The abnormal fragments are compared with the actual fragments. Results, such as the exception detection
component, are illustrated in Figure 4.1. As you can see from Figure 6, the exceptions found are essentially
the same as those flagged [14]. Due to error redundancy q, the difference between the number of anomalies
detected in this paper and the number of real anomalies is about ±100.
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Table 4.1: Experimental data.

SMAP MSL Total
Anomalous sequential total 72 38 109
The sum of dotted anomalous series 48(66.67%) 22(57.89%) 81(74.31%)
Background exception value total 24(33.33%) 16(42.11%) 28(25.69%)
Remote channel total 57 28 49
Total number of remote sensing data detected 447641 69489 517129

Spacecraft test data integration management technology based on big data platform 

 

 

 

Fig. 4.1: Comparison between the actual anomalous sequence and anomalous detection results.

4.3. Comparison of actual anomalous sequence and anomalous sequence detection results. The
ability of LSTM prediction is constantly improving, and the sensitivity to abnormal signals is also constantly
improving. The change rule is evident for some remote sensing data, and remote control commands do not
affect the remote sensing data. Therefore, anomaly detection in this case still needs further improvement [15].
The anomalies and background anomalies in two satellite remote sensing data types are examined based on
ten experiments. FIG. 4.2 shows the performance comparison between an integrated LSTM-based anomaly
detection method and an LSTM-based anomaly detection method in point anomaly detection and context
anomaly detection for SMAP and MSL2 spacecraft.

A new method for anomaly detection of satellite remote sensing data using integrated LSTM is proposed.
Compared with the LSTM algorithm, the single point anomaly detection rate of the SMAP algorithm is
increased from 87.5% to 98.96%. The anomaly detection rate of SMAP applied to text content increased from
80.21% to 91.67%. The anomaly detection rate of MSL text was increased from 67.71% to 79.17%. A multimodal
LSTM model based on the constraint model is proposed and applied to remote sensing data prediction. This
can improve the recognition rate of abnormal events. Compared with the LSTM algorithm, this algorithm’s
overall point anomaly detection rate is increased from 73.96% to 81.25%. The abnormal detection rate of the
whole environment increased from 75.00% to 84.38%.

5. Conclusion. This paper introduces an automatic control and management method for space vehicle
test equipment. The monitoring and control of the test equipment are realized. This interface matches the
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Fig. 4.2: Detection rates of different anomalies by two methods.

central control ATS. The system can automate and remotely manage the front-end test equipment of spacecraft.
A spacecraft remote sensing measurement system is proposed, and experiments verify its effectiveness. An
anomaly detection method for spacecraft telemetry data based on an integrated LSTM model is proposed. A
dynamic threshold is established, and the difference between prediction and measurement is analyzed. The
classification of remote measurement data is realized by mining the control mode of the remote command.
This method improves the prediction level of remote sensing data by the LSTM model. The application of
this system can effectively improve the management efficiency of front-end test equipment and promote the
implementation of spacecraft automated tests.
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