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GROUP INTELLIGENT CITY MOBILE COMMUNICATION NETWORK’S CONTROL
STRATEGY BASED ON CELLULAR INTERNET OF THINGS

JIAZHENG WEI∗

Abstract. Mobile communication network optimization heavily depends on power control technology, which impacts the
effectiveness of the network. This paper aims to enhance control over nonlinear mobile communication networks and achieve superior
performance by applying the particle swarm optimization (PSO) algorithm in the control domain. Addressing limitations in the
basic PSO algorithm, improvements are made and applied to urban mobile communication networks. The methodology involves
modifying the PSO algorithm to address identified issues and applying the enhanced algorithm to communication network scenarios.
Simulation results indicate that with an initial particle count of 10 and 100 iterations, the optimized values for and are 0.691 and
0.486, respectively, resulting in an objective function value of 55.514. This achievement validates the successful implementation of
the optimization process for mobile communication network control. The findings reveal that the proposed grad particle swarm
optimization (Grad-PSO) algorithm exhibits mobile network optimization by robust search capability and rapid convergence.

Key words: Grad-PSO, Particle movement, Mobile communication network, Optimal control, Internet of Things (IoT),
Learning factors.

1. Introduction. Mobile communication technology is undergoing profound transformations due to the
swift advancement of intelligent appliances and the Internet of Things. Primarily, mobile communication is
controlled to sustain a rapid developmental pace regarding user count and overall service. According to the
International Telecommunication Union (ITU), the tally of mobile subscribers reached nearly 7 billion by the
close of 2014, with mobile broadband’s growth rate consistently in the double digits. The surging demand for
mobile communication network technology presents significant opportunities and challenges, fueling a surge
in research and development across academic and industrial sectors, focusing on novel services, technologies,
standards, and products [1].

Within this dynamic context, 5G has emerged as a prominent focal point of communication technology’s
evolution, demonstrating extensive application prospects. Mobile communication network users are surging,
business domains are expanding, and network equipment is diversifying extensively. It compels mobile commu-
nication networks to enhance the provision of diverse services to an expanding user base, all while upholding
communication quality. Consequently, the prerequisites for mobile communication-related technologies are
escalating distinctly. The pivotal technology within mobile communication networks efficiently mitigates the
power control technology by direct interference among users operating on adjacent or near channels due to the
”far and near effect.” This substantial enhancement strengthens mobile communication networks’ capacity and
quality [2].

The Internet of Things (IoT) is a pivotal driving force for the evolution of mobile communications. Mobile
Internet has revolutionized conventional mobile communication services, furnishing users with experiences
such as ultra-high definition (3D) video, augmented and virtual reality, mobile cloud, and other immersive,
cutting-edge ventures. It has spurred a comprehensive metamorphosis in the information interaction mode,
speeding up the rapid maturation of mobile communication technology and the industry [3].

Moreover, the IoT has expansively broadened mobile communication applications. This expansion transcends
interpersonal communication, spanning into intelligent interconnections between various objects, facilitating
the application of mobile communication technology across various industries and sectors. The spread of IoT
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applications, ranging from mobile healthcare and smart homes to industrial control, vehicular networking, and
environmental monitoring, will manifest in greater abundance [4].

The profound vision of an interconnected world, termed ”the Internet of Everything,” is controlled to
materialize as an extensive array of IoT devices interface with the network for diverse purposes. This surge in IoT-
driven applications has given rise to many emerging industries, thus catalyzing the robust advancement of mobile
communication technology and the industry. Against this ”Internet of Everything” demand, the pressing need
for massive device connectivity, diverse services, and distinct user experiences has emerged as new focal points
for mobile communication research. Regarding the challenge of power control within mobile communication
networks, scholars worldwide have undertaken extensive research, applying an extent of optimization algorithms
to address this issue. While algorithms like genetic, ant colony, and particle swarm optimization methods have
made strides in resolving power control problems, their shortcomings, namely sluggish convergence, modest
precision, and susceptibility to local optimization, adversely impact real-time performance and accuracy. In
response to these challenges and aligning with the IoT’s stipulations for high reliability, low latency, and reduced
energy consumption, incorporating cache resources within the IoT is paramount in efficiently managing the
escalating IoT traffic [5, 6].

The paper’s section organization follows a structured progression to investigate the control method for group
intelligent city mobile communication networks using the Cellular Internet of Things (CIoT). The literature
review surveys relevant aspects of mobile communication networks, CIoT, and swarm intelligence algorithms are
discussed in Section 2. The proposed methodology outlines the proposed control approach, integrating PSO
within CIoT, explained in Section 3. The simulation and results are demonstrated in Section 4, which details the
method’s effectiveness through experimental comparisons and performance analysis. The conclusion summarizes
findings, contributions, and implications, emphasizing the significance of the research in shaping the future of
group intelligent city networks based on cellular IoT.

2. Literature review. Many experts and scholars have exhibited a pronounced interest in swarm in-
telligence, delving into novel approaches to tackle conventional intricate quandaries. Their pursuit involves
scrutinizing social insects’ societal conduct, precisely, the collaborative food-finding endeavours of simple insects.
Rooted in swarm intelligence, these diligent minds have introduced an array of algorithms, with the ant colony
algorithm and PSO emerging as the most emblematic exemplars [7].

The PSO algorithm was introduced by Kennedy and Eberhart in 2000, drawing inspiration from the
seeking behaviours of birds. It has evolved into a strong tool for nonlinear continuous optimization, combina-
torial optimization, mixed-integer nonlinear optimization, and various other optimization challenges due to
its straightforward process, limited parameter requirements, simple algorithmic structure, and ease of imple-
mentation. Nevertheless, nonlinear PSO possesses shortcomings such as insensitivity to environmental changes
and susceptibility to local minima. In recent years, scholars have devised enhanced algorithms grounded in
nonlinear PSO. Key advancements encompass parameter tuning, particle diversity selection, population structure
determination, and amalgamation with other intelligent techniques. Relative to counterparts like ant colonies
and genetic algorithms, PSO’s advantage lies in its fewer adjustable parameters; however, their meticulous
selection significantly influences accuracy and efficiency [8].

Three universally applicable principles are introduced for selecting population size, iteration count, and
particle velocity to enhance nonlinear PSO’s effectiveness. Additionally, experts have incorporated PSO with
other methods to overcome the local optima problem through population diversity control, balancing particle
attraction and repulsion processes. Further innovations include an adaptive PSO to navigate spatial changes in
dynamic systems, along with Qiu’s modulation strategy for mobile communication systems [9].

The theoretical foundation for PSO enhancements and applications remains underdeveloped. Particle
swarm optimization parameters are confined mainly to experimental realms, lacking comprehensive and well-
defined understanding. Therefore, exploring nonlinear particle swarm algorithms holds profound importance
for comprehending their internal mechanics and expanding their scope. Cellular networks have evolved as a
foundation in mobile communications, offering extensive coverage and reliable communication. Projections by
Qualcomm indicate that global IoT connectivity will surpass 5 billion by 2025, around diverse applications from
wearable devices to environmental monitoring. The propagation of intelligent devices connecting to cellular
networks positions them as the primary infrastructure for the Internet of Things [10].
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The enhancement and practical utilization of the PSO algorithm suffer from a shortage of theoretical
robustness. Parameters within the PSO algorithm remain within experimental realms, lacking substantial
and well-defined conceptualization. Thus, as an emerging intelligence paradigm, the nonlinear particle swarm
algorithm is essential for investigating its intrinsic mechanisms and expanding its application spheres. This IoT
growth extends across smart cities, transportation, environmental monitoring, and medical care, encompassing
an array of facets, from intelligent wearables and water/electricity meters to smart infrastructure like utility
hole covers and vehicular terminals. As such, many intelligent endpoints will interface with the network, thus
establishing cellular networks as the primary backbone for the Internet of Things [11].

The authors focus on crafting and executing machine learning methodologies to enhance smart cities’ data
processing efficiency, decision-making, and resource management capabilities. The research is anticipated to
explore a range of machine learning algorithms, including neural networks, support vector machines, clustering,
and deep learning models. These techniques can be analyzed for their potential utility across intelligent city
domains such as traffic management, energy optimization, waste management, public safety, and healthcare [12].

This study conducts an exhaustive survey on the potential applications of utilizing 5G network-based IoT
for demand response within smart grids. The investigation scrutinizes how this innovative strategy can augment
grid efficiency and responsiveness, contributing to a more sustainable and adaptable energy ecosystem. The
research gap becomes evident in the need for an all-encompassing, interdisciplinary approach that bridges the
theoretical prospects of 5G network-based IoT for demand response in smart grids with tangible considerations,
economic feasibility, regulatory hurdles, and human-centred aspects. Such an approach would yield a more
comprehensive grasp of the authentic potential, limitations, and prerequisites essential for effectively merging
these technologies, ultimately shaping the future energy management trajectory [13].

An adequate examination of the pragmatic challenges and constraints of deploying such a system within
intricate and dynamic urban settings is lacking. Despite proposing an inventive IoT-based method for accident
detection and reporting in smart cities, the study frequently neglects potential hindrances associated with real-
world implementation. Fundamentally, although the envisioned IoT-powered accident detection and reporting
system exhibits potential, additional research is imperative to bridge the disparity between theoretical concepts
and pragmatic complexities. This endeavour is essential to ensure the system’s efficacy, dependability, and
smooth adjustment within smart city environments [14].

The research fails to thoroughly examine the challenges and constraints of merging big data analysis and
deep learning techniques for constructing digital twins in smart cities. Although the suggested approach exhibits
potential for supporting smart city planning via digital twins, additional research is imperative to tackle the
noted deficiencies. This encompasses comprehending hurdles in data integration, ensuring model adaptability,
considering resource ramifications, fostering interdisciplinary collaboration, and addressing ethical considerations.
Addressing these gaps will play a pivotal role in harnessing the full potential of big data analysis and deep
learning for the inception and application of digital twins in smart urban environments [15].

3. 3.Proposed Grad-Particle Swarm Optimization algorithm. The PSO algorithm characterizes
each solution within an optimization problem as a ”particle.” The fitness values of these particles derive from
the objective function under optimization. Furthermore, individual particles possess velocities, prompting them
to trail the presently optimal particle across the solution space during the iterative search until the ultimate
solution surfaces.

Figure 3.1 illustrates the optimal control flowchart for a group-intelligent mobile communication network
founded upon the cellular IoT paradigm. Each particle refines its position by monitoring two ”extremes”
throughout each iteration. The particle’s self-derived optimal solution is termed the individual extremum. pbest
While the prevailing optimal solution for the entire population is known as the global extremum gbest Particles
must continually update both their velocity and position, a process governed by Equations 3.1 and 3.2.

vi = ωvi−1 + c1 × r1 × [pbest − xi−1] + c2 × r2 × [gbest − xi−1] (3.1)

xi = xi−1 + vi (3.2)

In the context of this representation, vi and vi−1 stand for the current and preceding particle movement
speeds, correspondingly. Likewise, xi and xi−1 denote the current and former particle positions, respectively. The
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Fig. 3.1: Flowchart for a group-intelligent mobile communication network

symbol ω signifies inertial weights, while pbest and gbest Indicate individual and global extrema, respectively. The
parameters c1 and c2 encapsulate learning factors, typically adopting equal values like c1 = c2 = 2. Furthermore,
r1, r2 are random numbers spanning the range from 0 to 1.

By amalgamating the operational swiftness and precision benefits inherent in traditional value optimization
techniques, a novel approach seeks to enhance the convergence velocity of the PSO algorithm. To this end, the
gradient method is infused into the PSO framework, culminating in a Grad-PSO algorithm fortified by a gradient
search factor. This algorithm posits the existence of a global minimum for the optimization function within the
domain space . It envisions a circular region ”A,” centred at the global minimum ”g,” and circumscribed by a
radius ”r,” representing the optimal zone.

During particle movement, when far from the global optimal value, the original position updating strategy
of the PSO algorithm is retained. In contrast, the gradient method governs position updates when proximity
to the global optimum is achieved. This strategic integration alleviates the computational burden introduced
by the stochastic particle position updates within the PSO algorithm. Upon entering the optimal region, the
gradient method guides particles to converge towards the optimal position swiftly, amplifying the optimization
pace.

While introducing the gradient method compromises some of the PSO algorithm’s randomness and adapt-
ability, it ensures particles within the optimal region remain confined, heightening single optimization efficiency.
Consequently, the overall optimization efficiency of the algorithm is markedly enhanced. The specific velocity
and position updating mechanism of the Grad-PSO algorithm is articulated through Equations 3.3 to 3.4.

x = x+ v, f(x) > f(g) + r (3.3)

x = T (x), f(x) 6 f(g) + r (3.4)

To verify the advantages of the proposed Grad-PSO algorithm, the following mathematical problems are
analyzed. The target function is minf(x) = x2 + 2x + 6. The constraint is −10 6 x 6 10. The problem is
optimizing one variable function with boundary constraints [16]. The global optimal solution is f(x) = 5.0000.
Matlab is used for programming, and the simulation results are shown in Figure 3.2.

The simulation experiment yields evidence that the Grad-PSO algorithm exhibits enhanced regularity
within the optimization function, owing to the incorporation of the gradient search factor. This characteristic
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Fig. 3.2: Simulation result of optimization function of Grad-PSO algorithm

demonstrates heightened optimization efficiency and remarkable precision. In summation, it can be deduced that
the Grad-PSO algorithm is a notably superior approach to function optimization. Within CDMA technology-
based cellular mobile communication systems, user terminals employ a shared spectrum for uplink and downlink
data transmission, inevitably leading to user interference. A prominent illustration is in broadband CDMA
cellular mobile communication systems, characterized by the ”near and far effect.” This effect is intimately
linked with channel power during user communication. Thus, effective management of the signal power of user
terminals is essential to mitigate this phenomenon.

Furthermore, optimizing the transmission power of base stations plays a pivotal role. This optimization
ensures that each user terminal receives an appropriate radiated power from the base station, contributing
to improved overall system performance. In a mobile communication system, the capacity and efficiency of
frequency spectrum utilization are directly contingent upon each user’s signal power and transmission rate. A
comprehensive mathematical model is devised to address power control challenges within mobile communication
networks, accounting for the interplay between power control and rate control strategies.

Consider a multi-cell DS-CDMA cellular mobile communication system comprising N users, collectively
sharing a spread bandwidth denoted as W. Notably, each user imposes distinct requisites concerning transmission
rate, delay, and bit error rate. For analytical convenience, let’s define the maximum allowable transmission
power per user as Pmaxi alongside the minimum required transmission rate denoted as Rmini. In addition,
a designated target bit energy-to-noise ratio (Eb/N0)is selected to align with specific bit error rate criteria.
This enables incorporating a variable transmission rate within a predetermined range to cater to individual
user-imposed delay constraints.

Integral to this model is the representation of critical factors. The parameter hii captures the channel gain
from user ”i” to the receiver at its base station. Similarly, hij signifies the channel gain originating from user
”j” to the receiving base station of user ”i.” The signal transmission power of user ”i” is denoted as Pi or γi
aligned with the target Eb/N0 requirement. Additionally, the background noise encountered at the base station
receiver assumes an additive white Gaussian nature, characterized by a unilateral power spectral density of η0.
Central to this framework is the normalized signal-to-noise ratio at the base station, conveyed as Eb/N0. The
illustration of this scenario is encapsulated within Equation 3.5, showcasing the reception of the user signal by
the base station.

Eb

N0
=
W

Ri
· hii × Pi∑
i 6=j

hij × Pj + η0 ×W
(3.5)

i = 1, 2, 3, ..., N (3.6)

To moderate interference among users in different cells, optimization is pursued through the minimization of
total transmitted power. Addressing scenarios where the system is congested and quality of service requirements
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must be upheld, a priority control strategy is introduced as follows: With a commitment to maintaining
high-priority services, the strategy endeavours to augment the transmission quality of low-priority services. This
augmentation is achieved by carefully elevating transmission power. To organize user priorities, a coefficient
Ai is introduced [17]. The optimization problem’s objective function is formulated in Equation 3.6, while the
constraints are articulated through Equations 3.7 to 3.9.

min
∑

AiPi (3.7)

Eb

N0
> γi (3.8)

0 6 Pi 6 Pmaxi (3.9)

Ri > Rmini (3.10)

The evaluation of the objective function’s values throughout various iterations evaluates the algorithm’s
advancement and its rate of convergence. This iterative process of enhancement, guided by the objective function,
amplifies the algorithm’s effectiveness in addressing complex problems.

4. Results and Discussion. To simplify the calculation, the mathematical model is simplified, starting
from a relatively simple case N=2. Set up N=2, i=1,2, P1 = x1, P2 = x2, R1 = y. According to the actual
situation of the mobile communication network, set W = 100MHz, η0 = 2 × 10−8, h11 = 2, h12 = 3, h21 =
1.5, h22 = 2.5, γi = 0.8, Pmax1 = Pmax2 = 1W,Rmini = 50Kb/s weight coefficient A1 = 30, A2 = 100. The
grad-PSO algorithm is used to optimize the power control. Its objective function is shown in Equation 4.1, and
its constraint conditions are shown in Equations 4.2-4.3.

f(x1, x2) = min(30x1 + 100x2) (4.1)

200x1
y(3x2 + 2)

> 0.8 (4.2)

250x1
y(1.5x2 + 2)

> 0.8 (4.3)

where 0 6 x1 6 1; 0 6 x2 6 1; y > 50.
The specific processing flow of the Grad-PSO algorithm is as follows.
Step 1: Set each parameter of the algorithm, such as the number of particles contained in the population,

that is the size of the population . Coefficient of inertia weight ω = 0.9 and acceleration constants c1 = c2 = 2.
Step 2: Perform arbitrary initialization on the particles of the population (the population size is N), and

calculate and determine the fitness of all particles;
Step 3: Evaluate the fitness of each particle calculated in step 2;
Step 4: Match the fitness value of each particle with the historical best position the comparison was

performed. If the current particle fitness value is better, thenis updated to the current fitness value;
Step 5: For each particle, the fitness value of fitness is combined with the historical optimal position of the

population gbest. If the best fitness value in the current population is better than the historical best gbest. Then
update it to gbest.

Step 6: Update the position and velocity of each particle according to the formula;
Step 7: Calculate the performance index to see whether it meets the optimization end condition. If the

condition is met, the current result is the optimal solution, and the algorithm ends. Otherwise, return to Step 3
and continue the next loop.
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Fig. 4.1: Objective function when the initial particle number is 10

Fig. 4.2: Objective function when the initial particle number is 20

By applying the grad-PSO algorithm to solve the objective function, the optimal solution can be obtained
as x1 = 0.6916, x2 = 0.4860. The target function is zero for f = 55.5140. Figures 4.1 and 4.2 show the changes
and comparison of the offline performance curve of the Grad-PSO algorithm when the number of iterations is
five, and the initial particle number is 10 and 20.

Upon comparing Figure 4.1 and Figure 4.2, it becomes evident that the Grad-PSO algorithm exhibits
disparate convergence speeds and paths while undergoing the same number of iterations but with varying initial
particle quantities. However, it’s noteworthy that, ultimately, both scenarios attain an identical optimal solution.

Table 4.1, presented below, illustrates the shifts in particle optimal positions (x1, x2) and objective function
value (f) with changes in iteration count for initial particle numbers 10 and 20, respectively. The data in Table
4.1 demonstrates that as the iteration count escalates, the Grad-PSO algorithm progressively approaches the
optimal value, remaining resilient against divergence from the optimal solution due to inherent randomness.
Despite their distinct initial particle counts, the convergence trajectory and pace vary under equivalent iteration
counts. Nonetheless, both scenarios efficiently converge towards the optimal power control objective, swiftly
realizing the optimization of the power control function.

5. Conclusion. This paper explored the power control principles that lead to a simplified model, viewed
through the lens of joint power and rate control. The Grad-PSO algorithm, a typical group intelligence
technique, finds wide application in engineering optimization challenges. Implementing the Grad-PSO in mobile
communication networks enhances blind channel equalization and communication quality. The Grad-PSO
algorithm claims discontinuity and differentiation, powerful search capabilities, and rapid convergence rates. As
particle count rises, so does the likelihood of achieving optimal solutions. Simulations demonstrate that with an
initial particle count of 10 and 100 iterations, x1 attains 0.691, x2 reaches 0.486, and the objective function
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Table 4.1: Particle optimal position and objective function values with the number of iterations

Initial
10 20number of

particles

Number of
5 20 40 100 5 20 40 100

iterations

x1 0.782 0.693 0.691 0.691 0.811 0.691 0.691 0.691

x2 0.416 0.488 0.486 0.486 0.547 0.486 0.486 0.486

f 59.441 55.757 55.517 55.514 62.892 55.561 55.515 55.514

value stands at 55.514, ultimately securing an optimal solution and enabling effective mobile communication
network control. Furthermore, as the PSO algorithm refines its iterative processes, the probability of rapid
optimal solution attainment surges.
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