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AN INTELLIGENT NETWORK METHOD FOR ANALYZING CORPORATE CONSUMER
REPURCHASE BEHAVIOR USING DEEP LEARNING NEURAL NETWORKS

QIUPING LU∗

Abstract. Earth system models (ESMs) are our key tools for analyzing the planet’s existing state and predicting its evolution
in the next continuing human-caused events. However, the use of artificial intelligence (AI) approaches to augment or even replace
conventional ESM functions has expanded in recent years, raising hopes that AI will be able to overcome some of the major
difficulties in climate research. We address the advantages and disadvantages of neural ESM neurons, as well as the unsolved
question of whether AI will eventually replace ESMs. Dynamic geophysical events are the foundation of Earth and environmental
studies. Given the widespread acceptance of AI and the growing amount of Earth data, the geoscientific community may wish to
seriously explore using artificial intelligence (AI) approaches at a much deeper level. Although it is a tall ambition to integrate
hybrid physics and AI approaches from a fresh perspective, geology has yet to figure out how to make such methods feasible. This
research is an important step towards realising the concept of combining physics and artificial intelligence to address problems
with the Earth’s system.
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1. Introduction. In geosciences, applying AI approaches has a lengthy history. For instance, Abbott
(1991), who coined hydro informatics 30 years ago, characterized it as combining computational hydraulics and
artificial intelligence. Nonetheless, the mainstream geoscientific community is still cautious about embracing
AI approaches, in large part because an AI model is believed to be a “black box,” offering few mechanistic
explanations beyond its capacity to fit, while some scientists have made an effort to explain black-box models,
doing so instead of first developing interpretable models is likely to result in bad practices be perpetuated.
With AI models, the geoscience community has increasingly considered the efficiency of the two paradigms as
an appealing study area [30, 6].

AI is used to create a proxy model, identify and repair the discrepancy between physical models and
observations, and other potential ways of physics-AI efficiency in geoscience were outlined. Comparatively
speaking, less research has been done on the hybrid modelling method, which tries to add several physical layers
to a network of neurons (NN) to make it more materially realistic. The geoscience industry has grown more
interested in studying the effectiveness of the two approaches due to the relative benefits of physical procedures
and AI models [12]. Given the relative benefits of biological processes and AI models, the geoscience community
has grown more interested in studying the effectiveness of the two paradigms. Due to the employment of a
single, integrated AI architecture throughout the process, the hybrid modelling method more closely matches
the possibility of raising geoscientific awareness of AI systems [2].

Since the nineteenth century, geoscientists have extensively used ODEs to explore geosystem undercurrents,
such as signal processing and global climate modelling. The proposed work is developed a innovative style is
utilizing runoff simulation. The primary function of hydrology is catchment runoff modelling. Hydrology is
an entire field in geosciences. In a watershed, water intake, outflow, and storage all change completed period.
In this work, the LSTM layer in a DL architecture incorporates a conceptual hydrologic model, resulting in
hydrology-aware DL models. Overall, our work shows that when adequately trained, AI may similarly acquire
biological knowledge to humans [25].

2. Fundamentals of Earth System Modelling. Based on Navier-Stokes equivalences, which explain
the atmosphere’s - fluid dynamics and seas, are examples of simple physical equations of motion explicitly
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Fig. 2.1: Representation of components of earth system model

known for Earth system components (Figure 2.1). It is practically impractical to resolve all pertinent dynamics
scales quantitatively. Hence approximations must be made.

The complication of the ESM makes it difficult to easily infer macroscopic occurrences from tiny scales
that may or may not be understood, is primarily to blame for this. For these situations, parameterizations
of potentially critical processes must also be approximated. Such parameterizations create free parameters in
ESMs, regardless of the process, for which fair values must be determined empirically [26]. Modern ESMs are
so large that most systematic calibration techniques, such as those based on Bayesian inference, are impractical.
As a result, the models are frequently adjusted by hand.

Even if they are required, parameterizations can generate biases or structural model errors. Furthermore,
it is envisaged that the model’s representation of the Earth system will become more accurate if significant
advancements are resolved plainly. Despite the huge success of ESMs, problems and uncertainty persist.

1. A large range of equilibrium climate sensitivity still exists in current ESMs. Between CMIP5 and
CMIP6, the range of expected symmetric weather warmth increased from 1.9-4.5 °C to 1.5-6.6 °C.
Losing such reservations is one of the key issues in developing ESMs.

2. Numerous Earth system subsystems may swiftly and gradually induce alterations, according to theo-
retical considerations and paleoclimate evidence. Many clear evolutions have been found in the CMIP5
models’ predictions of the future after a comprehensive investigation. But due of the extremely risky
events, it is still unclear if ESMs are reliable in predicting them.

3. Using the present ESMs is still necessary to assess the efficiency or environmental impact of CO2 removal
methods and crucial mitigation options for putting the Paris Agreement16 into practice. ESMs also
need to do a better job of capturing basic environmental processes like the carbon cycle, the availability
of water and nutrients, or the connections between land use and climate [24, 10].

4. The distributions of the time series encoding the dynamics of the Earth system frequently include
heavy tails. Severe weather has a very detrimental socioeconomic effect. Because human climate
change is still occurring, such events are expected to get worse. There is still space for improvement
when representing extremes, even though modern ESM are too competent at predicting usual climatic
quantities.

3. Literature Review. Following this line of thinking, we introduce the term “Neural Earth System
Modelling” (NESYM) and emphasize the need for a detail explanation forum that brings organized professionals
in AI, extensive data analysis, and Earth and climate science. The possibilities and potential problems of
NESYM and talk about the uncleared queries of AI is neither only permeate but ultimately replace ESM.

Process-based models were once considered vital resources for comprehending the intricate relationships
between the coupled Earth system’s components and predicting how the Earth system will react to human-
induced weather modification. The startling idea that Earth system models (ESMs) would become obsolete
when new artificial intelligence (AI) capabilities are developed has caused a gold rush-like feeling and ridicule
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among the scientific communities On the other hand, the majority of neural networks lack actual process
knowledge and are trained for discrete applications [18]. Yet, the daily expanding Earth system observation
(ESO) data streams, growing processing power, and the accessibility and availability of potent. We emphasize
the need for fresh transdisciplinary cooperation between the concerned communities to address the arising
problems.

It is not simply a fun exercise; it is crucial for applying AI to creating and using NESYM. Earth and climate
scientists can contribute to creating uniform standards that compare the geophysical consistency of stand-alone
ML and NESYM hybrid models. However, the AI community’s assistance is required to tackle additional
recently noted ML issues. For instance, it is creating new ways to recognize and prevent shortcut learning in
NESYM hybrids.In conclusion, the evolution of neural earth system modelling will only occur through joint
cooperation. The development of techniques will be further stimulated by problems unique to the Earth system,
and we offer the following four leading suggestions [20].

As a result, we suggest testing the efficacy of machine learning methods using produced fictional data.
It is used to assess actual data utilizing a range of dynamics that complex physical models simulate. When
training data is provided and extrapolation issues are taken into account, it is crucial. Future models should
employ process-driven and machine-learning methods of learning, according to our recommendation. Although
data-driven machine-learning technologies will greatly improve and supplement physical modelling, it will still
play a vital role in geoscientific research. Additionally, the neuro sciences will contribute to the development
of reliable physically grounded linkages for machine learning research [4].

Since physics constrains the search parameter space and eliminates implausible models, hybridization has
an intriguing regularization effect. Hence, physics-aware machine learning models need less training data, are
simpler (sparser), and better combat overfitting to attain similar performance. Overall, the hybrid modelling
framework represents a new line of inquiry that should be intensified and continued [5].

Despite its widespread success in other fields, The Transformer as a new DL architecture has yet to receive
much acceptance in this one. In this study, we suggest Earth former, a space-time Transformer for predicting the
behaviour of the Earth system. The concept is to apply parallel cuboid-level self-attention while decomposing
the data into cuboids. A group of global vectors connect these cuboids in more detail. To test the efficacy of
cuboid attention and determine the ideal architecture of Earth former, we do tests on the Movingness dataset
[8].

This paper proposes an Earth former, a space-time transformer, to forecast how the Earth system would
behave. Cuboid Awareness is a flexible and useful construction material that forms the basis of the Earth. We
obtained SOTA on Movingness, our recently proposed N-body MNIST, SEVIR, and ICAR-ENSO. There are
certain limitations to the job we do. Initially, the Earth model is a mechanical version without an uncertainty
model. By forecasting the average of all potential futures, the model can deliver foggy forecasts with poor
perceptual quality and require additional beneficial small-scale characteristics. More suitable methods must be
taken to evaluate the uncertainty in Earth system forecasting models. Extending Earth’s historical forecasting
model to a probabilistic one represents an exciting future direction. We plan to investigate ways to include
biological data into Earth’s past atmosphere in the future. [22, 9].

4. Materials and Methods.

4.1. LSTM Architecture. A unique variety of recurrent neural networks (RNN), known as the LSTM
architecture, was created to address the typical RNN’s inability to learn long-term dependencies. The typical
RNN can only remember sequence 10, as Bengio et al. (1994) demonstrated. It would indicate that for daily
streamflow modelling, we could only utilize the past ten days (about one and a half weeks)’ worth of input
taken from climatological data to forecast.

We unfold the network’s recurrence into a directed acyclic graph to illustrate how the RNN and the LSTM
function. The input m = m1,m2, · · · ,mn consists of the preceding n repeated period stages of self-determining
variable star and is processed sequentially to forecast the output at a particular period. The internal processes
of the recurrent cell, and these processes distinguish the LSTM from a standard RNN.Old RNN cells have
single internal state, lt, which is recalculated at each time step using the equation below.

lt = s(V mt + Y it−1 + bias) (4.1)
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Also, the input gate of the second gate computes which (and to what extent) information effect is utilized.
The current time step’s cell state should be updated:

it = σ(V ixt + Y iht−1 + bias) (4.2)

The following equation updates the cell state ct.

ct = ft(ct−1 + itct) (4.3)

where denotes multiplication by elements. Eq. (4.1) applies because both entries in the vectors ft are in the
range (0, 1). Like that, it determines which newly stored infect information will be discarded. (The value of it
of approx. 0).

Output gate calculation:

ot = σ(VWxt + Y oht=1 + b0) (4.4)

V0,Y0 and b0 are a set of learnable parameters defined for the problem, and ot is a vector with values
between (0, 1) output control. It is determined from this vector (4.5)

ht = tanh(ct)ot (4.5)

It can maintain the integrity of the information stored across many time steps because of its straightforward
linear interactions with the remaining LSTM cell. This property assists in preventing the issue of exploding or
disappearing gradients during training. The final discharge prediction is computed by a single output neuron
conventional dense layer. The following equation provides the viscous layer calculation:

y = Vdhn + bias (4.6)

Vd is the weight matrix, bias is the bias term, hn is the output of the final layer in LSTM at the previous
time step, and y is the final discharge, all derived from Eq. (4.6).

Finally, Algorithm 1 displays the complete LSTM layer’s pseudocode. When there are numerous stacked
LSTM layers, the output h = [h1, h2, · · · , hn] of the first layer serves as the input for the subsequent layer. Eq.
(4.6) is then used to determine the discharge, the final output, where ht is the final output of the last LSTM
layer [11, 13, 3, 15, 19].

4.2. LSTM Layers Description. The standardization process had comprised a predetermined number
of recapitulations in which the full calibration period is reproduced using a particular set of model parameters.
The network’s adaptable (or learnable) parameters, including its weights and biases, are altered when an LSTM
is trained based on the particular loss function of each iteration step. As a result, the gradient loss function
including the network metrics may was evaluated .

Figure 4.1 depicts the LSTM training and standardization process for one iteration phase graphically. A
batch or mini batch of the available training data is typically used for one iteration of LSTM training. A
hyperparameter is anything preset, such the 512 samples per batch. One discharge value from a certain day
plus weather information from the n days before that day make up each sample. The loss function is computed
as the average of the MSE of the simulated and real runoff for each of 512 samples in each iteration step [14].
Each piece inside a batch can be made up of randomly selected time steps, which are unnecessary to be ordered
chronologically because the discharge of a certain time step is just a function of the meteorological inputs of
the prior n days. Convergence can be hastened even with random samples included in the batch [23].

Given an optimization procedure without a convergence condition, the number of iteration steps affects
the overall number of model runs performed during calibration for conventional hydrological models. Neural
networks are referred to as epochs. Epochs are the intervals at which a training sample updates a model
parameter. If the data set included 1000 training samples and the batch size was 10, an epoch would have
100 iteration steps (the quantity of training samples divided by the quantity of samples per batch). In each
iteration step, 10 of the 1000 samples are taken without a replacement, continuing until all 1000 samples have
been used. The discharge time series of the training data is accurately replicated once [16].
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Fig. 4.1: LSTM architecture based on earth system modelling

For a conventional hydrological model, it is comparable to one calibration iteration, with the crucial differ-
ence being that each sample is generated independently of the others. The LSTM’s learning process throughout
several training epochs. Despite having to learn the complete rainfall-runoff relation from scratch for each pe-
riod, the network may better capture the discharge dynamics (grey line of random weights).

5. Experimentation and Results.

5.1. Dataset. The GSDE is created using a variety of regional and national soil databases or soil maps,
as well as the 1:5 million scale Digital Soil Map of the World (DSMW), which serves as a fundamental soil map.
In the accompanying information, specifics regarding the data sources are provided. One or more components
make up the soil mapping units in the soil maps. Each element takes up a specific portion of the mapping unit,
although it is not evident where they are. In most cases, the components share the same soil type or a mix
of soil type and additional taxonomy data, such as land use and texture class. The FAO-74 legend is used to
construct the DSMW. Europe and northern Eurasia are covered by the 1:1 million ESDB, which uses FAO-90
soil categorization data. Using the soil polygon linkage approach and the Genetic Soil Classification of China
(GSCC), the soil database for the land surface modelling in China was created [Shangguan et al., 2013]. To fill
in the gaps in the SOTER attribute data at scales between 1:250,000 and 1:5 million, the soil attributes of the
SOTWIS are based on the FAO-90 categorization [1, 17, 27, 28].

5.2. Results and Discussion. The State Soil Geography (STATSGO) dataset was replaced by the GSM
of the U.S. at a scale of 1:250,000 using the Soil Taxonomy (S.T.) [Soil Survey Staff, 1999]. However, the
available properties are significantly diverse and only partially cover the soil maps. These two profile databases
were integrated into a single data structure. Ten thousand two hundred fifty-three profiles containing FAO-74
and FAO-90 legends were stored in WISE 5.1, released in 2005. Around 1900 of the 81,218 profiles in the
NCSS were gathered outside of the United States. The NCSS uses the ST to refer to dirt. After deleting
soil profiles lacking soil classification or soil property measurement, 71 339 profiles remain. Using an LSTM
approach, Figure 5.1 shows the dataset’s mean, median, and mode [21, 29, 7]. Geospatial data is present in
60,638 of the 89,592 profiles in the WISE and NCSS. Local soils are typically more accurately represented in
soil profiles with greater density. Multiple techniques were employed in the lab and throughout time to measure
the soil properties in WISE and NCSS. The accuracy of the information of the NCSS is greater because the
soil investigations in the NCSS adhered to established protocols. In contrast, soil analyses in the WISE were
carried out in at least 190 laboratories worldwide using a variety of approaches. [Batjes, 2008a]. For deep soils,
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Fig. 5.1: Determination of mean, median and mode of LSTM in ESM

in particular, the characteristics of a soil profile are only sometimes known for each horizon. Regarding soil
properties, different soil classes are represented differently.

The two pipelines, in this instance, are used for runoff modelling and its parameterization, respectively,
in the generic design. As required by the LSTM, the climatic forcing variables P, T, and Lday, shortwave
downward radiation SRad and vapour pressure VP are the leading pipeline’s inputs. A two-layer standard NN
block is supplied with the five input variables and a preliminary runoff estimation Q* from the model-wrapped
LSTM(Feng et al., 2019). Conv1D layer has been used in research for data-based hydrologic modelling because
it can handle the lagged impact through a one-direction convolution operation. Through the Conv1D layers, the
physical approach’s approximation errors are fixed, and the final runoff Q is achieved. Like the main pipeline
architecture, the “hybrid DL model” blends physical principles (represented by the LSTM) with data-driven
components (i.e., Conv1D layers). Although there are many potential traps and dead ends in this research field,
a significant amount of risk is involved. The promise that artificial intelligence (AI) will assist in resolving the
main problems in Earth and climatic sciences is now required. Some of these challenges were highlighted at
the beginning of this Viewpoint. In addition, it is unlikely that AI will be able to solve the issue of climate
prediction on its own at this time. Therefore, the science of the Earth system will be able to advance through
AI, transcending the current uproar. The chance of the next evolutionary step will, however, improve if we can
create interpretable and geophysical consistent AI technology and find solutions to the limitations mentioned
above. The goal of Reichstein et al. (2019) to use hybrid physics and AI methodologies to address Earth system
challenges has been advanced by this study.

Moreover, the parameterization pipeline provides the main pipeline’s catchment awareness, which has dual
blocks of completely associated layers that supply for the LSTM layer and N for the Conv1D layers. The
parameterization pipeline allows to change with physiographic features across many catchments. Figure 5.2
shows yearly based data of ESM analysis.

6. Conclusion. Our Perspective is a reaction to the recent request for cooperation from the AI commu-
nity as well as the description of a workable scientific approach to better comprehend the present and future
conditions of the Earth. The artificial neural network framework suggested in this study can correctly infer
information about occurrences that are not experienced, as demonstrated via runoff modelling. The revolution-
ary design provides a practical method for appropriately guiding AI using geoscientific data. We foresee future
studies that will extend the developed framework to accommodate the deployment of increasingly sophisticated
AI systems to advance geoscience research and apply it in a variety of geoscientific situations.
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Fig. 5.2: Yearly based ESM analysis
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